Cargando…
Radiomics in Breast Cancer: In-Depth Machine Analysis of MR Images of Metastatic Spine Lesion
Using mathematic criteria for image processing (radiomics) makes it possible to more accurately assess the nature of therapy-associated changes and determine the sites of maximal response. Comparison of the acquired quantitative and clinical data may assist radiologists in making the optimal decisio...
Autores principales: | Steinhauer, V., Sergeev, N.I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Privolzhsky Research Medical University
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10090925/ https://www.ncbi.nlm.nih.gov/pubmed/37065427 http://dx.doi.org/10.17691/stm2022.14.2.02 |
Ejemplares similares
-
Radiomics-based machine learning analysis and characterization of breast lesions with multiparametric diffusion-weighted MR
por: Sun, Kun, et al.
Publicado: (2021) -
Characterization of Breast Tumors from MR Images Using Radiomics and Machine Learning Approaches
por: Faraz, Khuram, et al.
Publicado: (2023) -
Percutaneous acetabuloplasty for metastatic acetabular lesions
por: Maccauro, Giulio, et al.
Publicado: (2008) -
Lesion probability mapping in MS patients using a regression network on MR fingerprinting
por: Hermann, Ingo, et al.
Publicado: (2021) -
Classification of MR-Detected Additional Lesions in Patients With Breast Cancer Using a Combination of Radiomics Analysis and Machine Learning
por: Lee, Hyo-jae, et al.
Publicado: (2021)