Cargando…
Use of Machine Learning to Differentiate Children With Kawasaki Disease From Other Febrile Children in a Pediatric Emergency Department
IMPORTANCE: Early awareness of Kawasaki disease (KD) helps physicians administer appropriate therapy to prevent acquired heart disease in children. However, diagnosing KD is challenging and relies largely on subjective diagnosis criteria. OBJECTIVE: To develop a prediction model using machine learni...
Autores principales: | Tsai, Chih-Min, Lin, Chun-Hung Richard, Kuo, Ho-Chang, Cheng, Fu-Jen, Yu, Hong-Ren, Hung, Tsung-Chi, Hung, Chuan-Sheng, Huang, Chih-Ming, Chu, Yu-Cheng, Huang, Ying-Hsien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091152/ https://www.ncbi.nlm.nih.gov/pubmed/37040115 http://dx.doi.org/10.1001/jamanetworkopen.2023.7489 |
Ejemplares similares
-
Using Machine Learning to Predict Bacteremia in Febrile Children Presented to the Emergency Department
por: Tsai, Chih-Min, et al.
Publicado: (2020) -
A novel score system of blood tests for differentiating Kawasaki disease from febrile children
por: Tsai, Chih-Min, et al.
Publicado: (2021) -
Clinical Characteristics for Differentiating Febrile Children With Suspected Kawasaki Disease Diagnosis
por: Yan, Jia-Huei, et al.
Publicado: (2020) -
Using Machine Learning to Predict Invasive Bacterial Infections in Young Febrile Infants Visiting the Emergency Department
por: Chiu, I-Min, et al.
Publicado: (2021) -
Blood Mercury Levels in Children with Kawasaki Disease and Disease Outcome
por: Chang, Ling-Sai, et al.
Publicado: (2020)