Cargando…

Decoding Polymer Architecture Effect on Ion Clustering, Chain Dynamics, and Ionic Conductivity in Polymer Electrolytes

[Image: see text] Poly(ethylene oxide) (PEO)-based polymer electrolytes are a promising class of materials for use in lithium-ion batteries due to their high ionic conductivity and flexibility. In this study, the effects of polymer architecture including linear, star, and hyperbranched and salt (lit...

Descripción completa

Detalles Bibliográficos
Autores principales: Bakar, Recep, Darvishi, Saeid, Aydemir, Umut, Yahsi, Ugur, Tav, Cumali, Menceloglu, Yusuf Ziya, Senses, Erkan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091352/
https://www.ncbi.nlm.nih.gov/pubmed/37064412
http://dx.doi.org/10.1021/acsaem.3c00310
_version_ 1785023118174060544
author Bakar, Recep
Darvishi, Saeid
Aydemir, Umut
Yahsi, Ugur
Tav, Cumali
Menceloglu, Yusuf Ziya
Senses, Erkan
author_facet Bakar, Recep
Darvishi, Saeid
Aydemir, Umut
Yahsi, Ugur
Tav, Cumali
Menceloglu, Yusuf Ziya
Senses, Erkan
author_sort Bakar, Recep
collection PubMed
description [Image: see text] Poly(ethylene oxide) (PEO)-based polymer electrolytes are a promising class of materials for use in lithium-ion batteries due to their high ionic conductivity and flexibility. In this study, the effects of polymer architecture including linear, star, and hyperbranched and salt (lithiumbis(trifluoromethanesulfonyl)imide (LiTFSI)) concentration on the glass transition (T(g)), microstructure, phase diagram, free volume, and bulk viscosity, all of which play a significant role in determining the ionic conductivity of the electrolyte, have been systematically studied for PEO-based polymer electrolytes. The branching of PEO widens the liquid phase toward lower salt concentrations, suggesting decreased crystallization and improved ion coordination. At high salt loadings, ion clustering is common for all electrolytes, yet the cluster size and distribution appear to be strongly architecture-dependent. Also, the ionic conductivity is maximized at a salt concentration of [Li/EO ≈ 0.085] for all architectures, and the highly branched polymers displayed as much as three times higher ionic conductivity (with respect to the linear analogue) for the same total molar mass. The architecture-dependent ionic conductivity is attributed to the enhanced free volume measured by positron annihilation lifetime spectroscopy. Interestingly, despite the strong architecture dependence of ionic conductivity, the salt addition in the highly branched architectures results in accelerated yet similar monomeric friction coefficients for these polymers, offering significant potential toward decoupling of conductivity from segmental dynamics of polymer electrolytes, leading to outstanding battery performance.
format Online
Article
Text
id pubmed-10091352
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-100913522023-04-13 Decoding Polymer Architecture Effect on Ion Clustering, Chain Dynamics, and Ionic Conductivity in Polymer Electrolytes Bakar, Recep Darvishi, Saeid Aydemir, Umut Yahsi, Ugur Tav, Cumali Menceloglu, Yusuf Ziya Senses, Erkan ACS Appl Energy Mater [Image: see text] Poly(ethylene oxide) (PEO)-based polymer electrolytes are a promising class of materials for use in lithium-ion batteries due to their high ionic conductivity and flexibility. In this study, the effects of polymer architecture including linear, star, and hyperbranched and salt (lithiumbis(trifluoromethanesulfonyl)imide (LiTFSI)) concentration on the glass transition (T(g)), microstructure, phase diagram, free volume, and bulk viscosity, all of which play a significant role in determining the ionic conductivity of the electrolyte, have been systematically studied for PEO-based polymer electrolytes. The branching of PEO widens the liquid phase toward lower salt concentrations, suggesting decreased crystallization and improved ion coordination. At high salt loadings, ion clustering is common for all electrolytes, yet the cluster size and distribution appear to be strongly architecture-dependent. Also, the ionic conductivity is maximized at a salt concentration of [Li/EO ≈ 0.085] for all architectures, and the highly branched polymers displayed as much as three times higher ionic conductivity (with respect to the linear analogue) for the same total molar mass. The architecture-dependent ionic conductivity is attributed to the enhanced free volume measured by positron annihilation lifetime spectroscopy. Interestingly, despite the strong architecture dependence of ionic conductivity, the salt addition in the highly branched architectures results in accelerated yet similar monomeric friction coefficients for these polymers, offering significant potential toward decoupling of conductivity from segmental dynamics of polymer electrolytes, leading to outstanding battery performance. American Chemical Society 2023-03-23 /pmc/articles/PMC10091352/ /pubmed/37064412 http://dx.doi.org/10.1021/acsaem.3c00310 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Bakar, Recep
Darvishi, Saeid
Aydemir, Umut
Yahsi, Ugur
Tav, Cumali
Menceloglu, Yusuf Ziya
Senses, Erkan
Decoding Polymer Architecture Effect on Ion Clustering, Chain Dynamics, and Ionic Conductivity in Polymer Electrolytes
title Decoding Polymer Architecture Effect on Ion Clustering, Chain Dynamics, and Ionic Conductivity in Polymer Electrolytes
title_full Decoding Polymer Architecture Effect on Ion Clustering, Chain Dynamics, and Ionic Conductivity in Polymer Electrolytes
title_fullStr Decoding Polymer Architecture Effect on Ion Clustering, Chain Dynamics, and Ionic Conductivity in Polymer Electrolytes
title_full_unstemmed Decoding Polymer Architecture Effect on Ion Clustering, Chain Dynamics, and Ionic Conductivity in Polymer Electrolytes
title_short Decoding Polymer Architecture Effect on Ion Clustering, Chain Dynamics, and Ionic Conductivity in Polymer Electrolytes
title_sort decoding polymer architecture effect on ion clustering, chain dynamics, and ionic conductivity in polymer electrolytes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091352/
https://www.ncbi.nlm.nih.gov/pubmed/37064412
http://dx.doi.org/10.1021/acsaem.3c00310
work_keys_str_mv AT bakarrecep decodingpolymerarchitectureeffectonionclusteringchaindynamicsandionicconductivityinpolymerelectrolytes
AT darvishisaeid decodingpolymerarchitectureeffectonionclusteringchaindynamicsandionicconductivityinpolymerelectrolytes
AT aydemirumut decodingpolymerarchitectureeffectonionclusteringchaindynamicsandionicconductivityinpolymerelectrolytes
AT yahsiugur decodingpolymerarchitectureeffectonionclusteringchaindynamicsandionicconductivityinpolymerelectrolytes
AT tavcumali decodingpolymerarchitectureeffectonionclusteringchaindynamicsandionicconductivityinpolymerelectrolytes
AT mencelogluyusufziya decodingpolymerarchitectureeffectonionclusteringchaindynamicsandionicconductivityinpolymerelectrolytes
AT senseserkan decodingpolymerarchitectureeffectonionclusteringchaindynamicsandionicconductivityinpolymerelectrolytes