Cargando…
Evaluation of the contribution of gut microbiome dysbiosis to cardiac surgery-associated acute kidney injury by comparative metagenome analysis
INTRODUCTION: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common hospital-acquired AKI that carries a grave disease burden. Recently, gut-kidney crosstalk has greatly changed our understanding of the pathogenesis of kidney diseases. However, the relationship between gut microbial d...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091463/ https://www.ncbi.nlm.nih.gov/pubmed/37065117 http://dx.doi.org/10.3389/fmicb.2023.1119959 |
Sumario: | INTRODUCTION: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common hospital-acquired AKI that carries a grave disease burden. Recently, gut-kidney crosstalk has greatly changed our understanding of the pathogenesis of kidney diseases. However, the relationship between gut microbial dysbiosis and CSA-AKI remains unclear. The purpose of this study was to investigate the possible contributions of gut microbiota alterations in CSA-AKI patients. METHODS: Patients undergoing cardiac surgery were enrolled and divided into acute kidney injury (AKI) and Non_AKI groups. Faecal samples were collected before the operation. Shotgun metagenomic sequencing was performed to identify the taxonomic composition of the intestinal microbiome. All groups were statistically compared with alpha- and beta-diversity analysis, and linear discriminant analysis effect size (LEfSe) analysis was performed. RESULTS: A total of 70 individuals comprising 35 AKI and 35 Non_AKI were enrolled in the study. There was no significant difference between the AKI and Non_AKI groups with respect to the alpha-and beta-diversity of the Shannon index, Simpson or Chao1 index values except with respect to functional pathways (p < 0.05). However, the relative abundance of top 10 gut microbiota in CSA-AKI was different from the Non_AKI group. Interestingly, both LEfSe and multivariate analysis confirmed that the species Escherichia coli, Rothia mucilaginosa, and Clostridium innocuum were associated with CSA-AKI. Moreover, correlation heat map indicated that altered pathways and disrupted function could be attributed to disturbances of gut microbiota involving Escherichia coli. CONCLUSION: Dysbiosis of the intestinal microbiota in preoperative stool affects susceptibility to CSA-AKI, indicating the crucial role of key microbial players in the development of CSA-AKI. This work provides valuable knowledge for further study of the contribution of gut microbiota in CSA-AKI. |
---|