Cargando…

Promoting the application of Pinus thunbergii Parl. to enhance the growth and survival rates of post-germination somatic plantlets

OBJECTIVE: There is a growing need for nematode resistant Pinaceae species plantlets to cope with the global scale degradation of coniferous forests, due to the prevalence of pine wilt disease. One of the bottlenecks that limits the commercialization of Pinaceae species plantlets is regeneration fol...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Tingyu, Wang, Yanli, Wu, Xiaoqin, Ye, Jianren, Cheng, Fang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091573/
https://www.ncbi.nlm.nih.gov/pubmed/37041469
http://dx.doi.org/10.1186/s12870-023-04175-1
Descripción
Sumario:OBJECTIVE: There is a growing need for nematode resistant Pinaceae species plantlets to cope with the global scale degradation of coniferous forests, due to the prevalence of pine wilt disease. One of the bottlenecks that limits the commercialization of Pinaceae species plantlets is regeneration following their transfer from controlled sterile environments to the field while maintaining high survival rates. METHODS: The growth factors of somatic plantlets (SPs), such as sucrose, media, culture substrate, brassinolide and spectrum were investigated to promote the application of somatic nematode-resistant P. thunbergii plants in afforestation. RESULTS: The 1/2 WPM liquid medium, culture substrate (perlite and vermiculite =1:1), and carbohydrate (20 g/L sucrose) were effective in stimulating the growth of rooted SPs. While for unrooted SPs, 1 ug/L of brassinolide enhanced plantlet growth and rooting. And blue light (B) significantly promoted the longitudinal growth of shoots, while red light (R) was beneficial for root growth during the laboratory domestication stage. High quality SPs were obtained at a R/B ratio of 8:2. Following this acclimatization protocol, the P. thunbergii SPs could be directly transplanted to the field with a higher survival rate (85.20 %) in a forcing house. CONCLUSION: this acclimatization protocol extremely improved the survival rate of P. thunbergii SPs. Moreover, this work will contribute to enhancing the possibilities for somatic plant afforestation with Pinus species. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-023-04175-1.