Cargando…
Deterministic generation of indistinguishable photons in a cluster state
Entanglement between particles is a basic concept of quantum sciences. The ability to produce entangled particles in a controllable manner is essential for any quantum technology. Entanglement between light particles (photons) is particularly crucial for quantum communication due to light’s non-inte...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10091623/ https://www.ncbi.nlm.nih.gov/pubmed/37064524 http://dx.doi.org/10.1038/s41566-022-01152-2 |
Sumario: | Entanglement between particles is a basic concept of quantum sciences. The ability to produce entangled particles in a controllable manner is essential for any quantum technology. Entanglement between light particles (photons) is particularly crucial for quantum communication due to light’s non-interactive nature and long-lasting coherence. Resources producing entangled multiphoton cluster states will enable communication between remote quantum nodes, as the inbuilt redundancy of cluster photons allows for repeated local measurements—compensating for losses and probabilistic Bell measurements. For feasible applications, the cluster generation should be fast, deterministic and, most importantly, its photons indistinguishable, which will allow measurements and fusion of clusters by interfering photons. Here, using periodic excitation of a semiconductor quantum-dot-confined spin, we demonstrate a multi-indistinguishable photon cluster, featuring a continuously generated string of photons at deterministic gigahertz generation rates, and an optimized entanglement length of about ten photons. The indistinguishability of the photons opens up new possibilities for scaling up the cluster’s dimensionality by fusion, thus building graph states suited for measurement-based photonic quantum computers and all-photonic quantum repeaters. |
---|