Cargando…
A reinforcement learning‐based hybrid modeling framework for bioprocess kinetics identification
Constructing predictive models to simulate complex bioprocess dynamics, particularly time‐varying (i.e., parameters varying over time) and history‐dependent (i.e., current kinetics dependent on historical culture conditions) behavior, has been a longstanding research challenge. Current advances in h...
Autores principales: | Mowbray, Max R., Wu, Chufan, Rogers, Alexander W., Rio‐Chanona, Ehecatl A. Del, Zhang, Dongda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092184/ https://www.ncbi.nlm.nih.gov/pubmed/36225098 http://dx.doi.org/10.1002/bit.28262 |
Ejemplares similares
-
Dynamic modelling of high biomass density cultivation and biohydrogen production in different scales of flat plate photobioreactors
por: Zhang, Dongda, et al.
Publicado: (2015) -
Hybrid Approach to State Estimation for Bioprocess Control
por: Simutis, Rimvydas, et al.
Publicado: (2017) -
Integrating Autoencoder
and Heteroscedastic Noise
Neural Networks for the Batch Process Soft-Sensor Design
por: Kay, Sam, et al.
Publicado: (2022) -
Bioprocess microfluidics: applying microfluidic devices for bioprocessing
por: Marques, Marco PC, et al.
Publicado: (2017) -
pyFOOMB: Python framework for object oriented modeling of bioprocesses
por: Hemmerich, Johannes, et al.
Publicado: (2021)