Cargando…
Differential Tunneling‐Driven and Vibrationally‐Induced Reactivity in Isomeric Benzazirines
Quantum mechanical tunneling of heavy‐atoms and vibrational excitation chemistry are unconventional and scarcely explored types of reactivity. Once fully understood, they might bring new avenues to conduct chemical transformations, providing access to a new world of molecules or ways of exquisite re...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092225/ https://www.ncbi.nlm.nih.gov/pubmed/36066476 http://dx.doi.org/10.1002/chem.202202306 |
_version_ | 1785023295987384320 |
---|---|
author | Nunes, Cláudio M. Doddipatla, Srinivas Loureiro, Gonçalo F. Roque, José P. L. Pereira, Nelson A. M. Pinho e Melo, Teresa M. V. D. Fausto, Rui |
author_facet | Nunes, Cláudio M. Doddipatla, Srinivas Loureiro, Gonçalo F. Roque, José P. L. Pereira, Nelson A. M. Pinho e Melo, Teresa M. V. D. Fausto, Rui |
author_sort | Nunes, Cláudio M. |
collection | PubMed |
description | Quantum mechanical tunneling of heavy‐atoms and vibrational excitation chemistry are unconventional and scarcely explored types of reactivity. Once fully understood, they might bring new avenues to conduct chemical transformations, providing access to a new world of molecules or ways of exquisite reaction control. In this context, we present here the discovery of two isomeric benzazirines exhibiting differential tunneling‐driven and vibrationally‐induced reactivity, which constitute exceptional results for probing into the nature of these phenomena. The isomeric 6‐fluoro‐ and 2‐fluoro‐4‐hydroxy‐2H‐benzazirines (3‐a and 3′‐s) were generated in cryogenic krypton matrices by visible‐light irradiation of the corresponding triplet nitrene ( 3 ) 2‐a, which was produced by UV‐light irradiation of its azide precursor. The 3′‐s was found to be stable under matrix dark conditions, whereas 3‐a spontaneously rearranges (τ (1/2) ∼64 h at 10 and 20 K) by heavy‐atom tunneling to ( 3 ) 2‐a. Near‐IR‐light irradiation at the first OH stretching overtone frequencies (remote vibrational antenna) of the benzazirines induces the 3′‐s ring‐expansion reaction to a seven‐member cyclic ketenimine, but the 3‐a undergoes 2H‐azirine ring‐opening reaction to triplet nitrene ( 3 ) 2‐a. Computations demonstrate that 3‐a and 3′‐s have distinct reaction energy profiles, which explain the different experimental results. The spectroscopic direct measurement of the tunneling of 3‐a to ( 3 ) 2‐a constitutes a unique example of an observation of a species reacting only by nitrogen tunneling. Moreover, the vibrationally‐induced sole activation of the most favorable bond‐breaking/bond‐forming pathway available for 3‐a and 3′‐s provides pioneer results regarding the selective nature of such processes. |
format | Online Article Text |
id | pubmed-10092225 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100922252023-04-13 Differential Tunneling‐Driven and Vibrationally‐Induced Reactivity in Isomeric Benzazirines Nunes, Cláudio M. Doddipatla, Srinivas Loureiro, Gonçalo F. Roque, José P. L. Pereira, Nelson A. M. Pinho e Melo, Teresa M. V. D. Fausto, Rui Chemistry Research Articles Quantum mechanical tunneling of heavy‐atoms and vibrational excitation chemistry are unconventional and scarcely explored types of reactivity. Once fully understood, they might bring new avenues to conduct chemical transformations, providing access to a new world of molecules or ways of exquisite reaction control. In this context, we present here the discovery of two isomeric benzazirines exhibiting differential tunneling‐driven and vibrationally‐induced reactivity, which constitute exceptional results for probing into the nature of these phenomena. The isomeric 6‐fluoro‐ and 2‐fluoro‐4‐hydroxy‐2H‐benzazirines (3‐a and 3′‐s) were generated in cryogenic krypton matrices by visible‐light irradiation of the corresponding triplet nitrene ( 3 ) 2‐a, which was produced by UV‐light irradiation of its azide precursor. The 3′‐s was found to be stable under matrix dark conditions, whereas 3‐a spontaneously rearranges (τ (1/2) ∼64 h at 10 and 20 K) by heavy‐atom tunneling to ( 3 ) 2‐a. Near‐IR‐light irradiation at the first OH stretching overtone frequencies (remote vibrational antenna) of the benzazirines induces the 3′‐s ring‐expansion reaction to a seven‐member cyclic ketenimine, but the 3‐a undergoes 2H‐azirine ring‐opening reaction to triplet nitrene ( 3 ) 2‐a. Computations demonstrate that 3‐a and 3′‐s have distinct reaction energy profiles, which explain the different experimental results. The spectroscopic direct measurement of the tunneling of 3‐a to ( 3 ) 2‐a constitutes a unique example of an observation of a species reacting only by nitrogen tunneling. Moreover, the vibrationally‐induced sole activation of the most favorable bond‐breaking/bond‐forming pathway available for 3‐a and 3′‐s provides pioneer results regarding the selective nature of such processes. John Wiley and Sons Inc. 2022-10-13 2022-12-01 /pmc/articles/PMC10092225/ /pubmed/36066476 http://dx.doi.org/10.1002/chem.202202306 Text en © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Nunes, Cláudio M. Doddipatla, Srinivas Loureiro, Gonçalo F. Roque, José P. L. Pereira, Nelson A. M. Pinho e Melo, Teresa M. V. D. Fausto, Rui Differential Tunneling‐Driven and Vibrationally‐Induced Reactivity in Isomeric Benzazirines |
title | Differential Tunneling‐Driven and Vibrationally‐Induced Reactivity in Isomeric Benzazirines |
title_full | Differential Tunneling‐Driven and Vibrationally‐Induced Reactivity in Isomeric Benzazirines |
title_fullStr | Differential Tunneling‐Driven and Vibrationally‐Induced Reactivity in Isomeric Benzazirines |
title_full_unstemmed | Differential Tunneling‐Driven and Vibrationally‐Induced Reactivity in Isomeric Benzazirines |
title_short | Differential Tunneling‐Driven and Vibrationally‐Induced Reactivity in Isomeric Benzazirines |
title_sort | differential tunneling‐driven and vibrationally‐induced reactivity in isomeric benzazirines |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092225/ https://www.ncbi.nlm.nih.gov/pubmed/36066476 http://dx.doi.org/10.1002/chem.202202306 |
work_keys_str_mv | AT nunesclaudiom differentialtunnelingdrivenandvibrationallyinducedreactivityinisomericbenzazirines AT doddipatlasrinivas differentialtunnelingdrivenandvibrationallyinducedreactivityinisomericbenzazirines AT loureirogoncalof differentialtunnelingdrivenandvibrationallyinducedreactivityinisomericbenzazirines AT roquejosepl differentialtunnelingdrivenandvibrationallyinducedreactivityinisomericbenzazirines AT pereiranelsonam differentialtunnelingdrivenandvibrationallyinducedreactivityinisomericbenzazirines AT pinhoemeloteresamvd differentialtunnelingdrivenandvibrationallyinducedreactivityinisomericbenzazirines AT faustorui differentialtunnelingdrivenandvibrationallyinducedreactivityinisomericbenzazirines |