Cargando…

Genetic mechanisms modulating behaviour through plastic chemosensory responses in insects

The ability to transition between different behavioural stages is a widespread phenomenon across the animal kingdom. Such behavioural adaptations are often linked to changes in the sensitivity of those neurons that sense chemical cues associated with the respective behaviours. To identify the geneti...

Descripción completa

Detalles Bibliográficos
Autores principales: Kohlmeier, Philip, Billeter, Jean‐Christophe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092625/
https://www.ncbi.nlm.nih.gov/pubmed/36239485
http://dx.doi.org/10.1111/mec.16739
Descripción
Sumario:The ability to transition between different behavioural stages is a widespread phenomenon across the animal kingdom. Such behavioural adaptations are often linked to changes in the sensitivity of those neurons that sense chemical cues associated with the respective behaviours. To identify the genetic mechanisms that regulate neuronal sensitivity, and by that behaviour, typically *omics approaches, such as RNA‐ and protein‐sequencing, are applied to sensory organs of individuals displaying differences in behaviour. In this review, we discuss these genetic mechanisms and how they impact neuronal sensitivity, summarize the correlative and functional evidence for their role in regulating behaviour and discuss future directions. As such, this review can help interpret *omics data by providing a comprehensive list of already identified genes and mechanisms that impact behaviour through changes in neuronal sensitivity.