Cargando…
A Photochemical Macrocyclization Route to Asymmetric Strained [3.2] Paracyclophanes
The intricate frameworks of paracyclophanes are an important target for synthesis since they are found in various chiral auxiliaries, solar cells, high‐performance plastics, pharmaceuticals, and molecular machines. Whereas numerous methods exist for the preparation of symmetric paracyclophanes, prot...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092696/ https://www.ncbi.nlm.nih.gov/pubmed/36094023 http://dx.doi.org/10.1002/chem.202202577 |
_version_ | 1785023409186406400 |
---|---|
author | Haensch, Veit G. Görls, Helmar Hertweck, Christian |
author_facet | Haensch, Veit G. Görls, Helmar Hertweck, Christian |
author_sort | Haensch, Veit G. |
collection | PubMed |
description | The intricate frameworks of paracyclophanes are an important target for synthesis since they are found in various chiral auxiliaries, solar cells, high‐performance plastics, pharmaceuticals, and molecular machines. Whereas numerous methods exist for the preparation of symmetric paracyclophanes, protocols for the efficient synthesis of strained asymmetric scaffolds are limited. Here we report a remarkably simple photochemical route to strained [3.2]paracyclophanes starting from readily available educts. By way of NMR and X‐ray analyses, we discovered that UV‐irradiation of an aromatic carboxylic ester tethered to a toluene moiety leads to the intramolecular formation of a new C−C bond, with loss of an alcohol. A systematic evaluation of the reaction conditions and substituents, as well as radical starter and triplet quenching experiments, point to a reaction mechanism involving an excited triplet state and hydrogen atom transfer. The new method proved to be robust and versatile enabling the synthesis of a range of cyclophanes with different substitutions, including an unusual diastereoisomer with two planar chiral centers, and thus proved to be a valuable addition to the synthetic toolbox. |
format | Online Article Text |
id | pubmed-10092696 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-100926962023-04-13 A Photochemical Macrocyclization Route to Asymmetric Strained [3.2] Paracyclophanes Haensch, Veit G. Görls, Helmar Hertweck, Christian Chemistry Research Articles The intricate frameworks of paracyclophanes are an important target for synthesis since they are found in various chiral auxiliaries, solar cells, high‐performance plastics, pharmaceuticals, and molecular machines. Whereas numerous methods exist for the preparation of symmetric paracyclophanes, protocols for the efficient synthesis of strained asymmetric scaffolds are limited. Here we report a remarkably simple photochemical route to strained [3.2]paracyclophanes starting from readily available educts. By way of NMR and X‐ray analyses, we discovered that UV‐irradiation of an aromatic carboxylic ester tethered to a toluene moiety leads to the intramolecular formation of a new C−C bond, with loss of an alcohol. A systematic evaluation of the reaction conditions and substituents, as well as radical starter and triplet quenching experiments, point to a reaction mechanism involving an excited triplet state and hydrogen atom transfer. The new method proved to be robust and versatile enabling the synthesis of a range of cyclophanes with different substitutions, including an unusual diastereoisomer with two planar chiral centers, and thus proved to be a valuable addition to the synthetic toolbox. John Wiley and Sons Inc. 2022-10-17 2022-12-09 /pmc/articles/PMC10092696/ /pubmed/36094023 http://dx.doi.org/10.1002/chem.202202577 Text en © 2022 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Haensch, Veit G. Görls, Helmar Hertweck, Christian A Photochemical Macrocyclization Route to Asymmetric Strained [3.2] Paracyclophanes |
title | A Photochemical Macrocyclization Route to Asymmetric Strained [3.2] Paracyclophanes |
title_full | A Photochemical Macrocyclization Route to Asymmetric Strained [3.2] Paracyclophanes |
title_fullStr | A Photochemical Macrocyclization Route to Asymmetric Strained [3.2] Paracyclophanes |
title_full_unstemmed | A Photochemical Macrocyclization Route to Asymmetric Strained [3.2] Paracyclophanes |
title_short | A Photochemical Macrocyclization Route to Asymmetric Strained [3.2] Paracyclophanes |
title_sort | photochemical macrocyclization route to asymmetric strained [3.2] paracyclophanes |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092696/ https://www.ncbi.nlm.nih.gov/pubmed/36094023 http://dx.doi.org/10.1002/chem.202202577 |
work_keys_str_mv | AT haenschveitg aphotochemicalmacrocyclizationroutetoasymmetricstrained32paracyclophanes AT gorlshelmar aphotochemicalmacrocyclizationroutetoasymmetricstrained32paracyclophanes AT hertweckchristian aphotochemicalmacrocyclizationroutetoasymmetricstrained32paracyclophanes AT haenschveitg photochemicalmacrocyclizationroutetoasymmetricstrained32paracyclophanes AT gorlshelmar photochemicalmacrocyclizationroutetoasymmetricstrained32paracyclophanes AT hertweckchristian photochemicalmacrocyclizationroutetoasymmetricstrained32paracyclophanes |