Cargando…
Fabrication and Functionalisation of Nanocarbon‐Based Field‐Effect Transistor Biosensors
Nanocarbon‐based field‐effect transistor (NC‐FET) biosensors are at the forefront of future diagnostic technology. By integrating biological molecules with electrically conducting carbon‐based platforms, high sensitivity real‐time multiplexed sensing is possible. Combined with their small footprint,...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092808/ https://www.ncbi.nlm.nih.gov/pubmed/36193790 http://dx.doi.org/10.1002/cbic.202200282 |
Sumario: | Nanocarbon‐based field‐effect transistor (NC‐FET) biosensors are at the forefront of future diagnostic technology. By integrating biological molecules with electrically conducting carbon‐based platforms, high sensitivity real‐time multiplexed sensing is possible. Combined with their small footprint, portability, ease of use, and label‐free sensing mechanisms, NC‐FETs are prime candidates for the rapidly expanding areas of point‐of‐care testing, environmental monitoring and biosensing as a whole. In this review we provide an overview of the basic operational mechanisms behind NC‐FETs, synthesis and fabrication of FET devices, and developments in functionalisation strategies for biosensing applications. |
---|