Cargando…
Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment
A pressing health problem, both in clinical and socio-economic terms, is the increase in the number of patients with liver damage caused by viral diseases (hepatitis), cancer, toxicological damage, or metabolic disorders. Liver function assessment is a complex task, for which various existing diagno...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092963/ https://www.ncbi.nlm.nih.gov/pubmed/37046487 http://dx.doi.org/10.3390/diagnostics13071269 |
_version_ | 1785023471088041984 |
---|---|
author | Karseeva, Elina Kolokolnikov, Ilya Medvedeva, Ekaterina Savchenko, Elena |
author_facet | Karseeva, Elina Kolokolnikov, Ilya Medvedeva, Ekaterina Savchenko, Elena |
author_sort | Karseeva, Elina |
collection | PubMed |
description | A pressing health problem, both in clinical and socio-economic terms, is the increase in the number of patients with liver damage caused by viral diseases (hepatitis), cancer, toxicological damage, or metabolic disorders. Liver function assessment is a complex task, for which various existing diagnostic methods are used. Unfortunately, they all have several limitations which frequently make prompt and accurate diagnosis impossible. The high level of disability and mortality caused by liver diseases makes the development of new liver diagnostic methods very urgent. In this paper, we describe a new joint methodology for studying liver function based on optical densitometry and dynamic light scattering. This will help to diagnose and predict the dynamics of liver function during treatment with greater efficiency, due to including in consideration the individual characteristics of the cardiovascular system and tissue metabolism. In this paper, we present a laboratory model of a combined sensor for optical densitometry and dynamic light scattering. We also developed special software for controlling the sensor and processing the recorded data. Modeling experiments and physical medical studies were carried out to adjust and calibrate the sensor and software. We also assessed the sensor resolution when registering the concentration of dye in the human body and the minimum measured flow rate. |
format | Online Article Text |
id | pubmed-10092963 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100929632023-04-13 Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment Karseeva, Elina Kolokolnikov, Ilya Medvedeva, Ekaterina Savchenko, Elena Diagnostics (Basel) Article A pressing health problem, both in clinical and socio-economic terms, is the increase in the number of patients with liver damage caused by viral diseases (hepatitis), cancer, toxicological damage, or metabolic disorders. Liver function assessment is a complex task, for which various existing diagnostic methods are used. Unfortunately, they all have several limitations which frequently make prompt and accurate diagnosis impossible. The high level of disability and mortality caused by liver diseases makes the development of new liver diagnostic methods very urgent. In this paper, we describe a new joint methodology for studying liver function based on optical densitometry and dynamic light scattering. This will help to diagnose and predict the dynamics of liver function during treatment with greater efficiency, due to including in consideration the individual characteristics of the cardiovascular system and tissue metabolism. In this paper, we present a laboratory model of a combined sensor for optical densitometry and dynamic light scattering. We also developed special software for controlling the sensor and processing the recorded data. Modeling experiments and physical medical studies were carried out to adjust and calibrate the sensor and software. We also assessed the sensor resolution when registering the concentration of dye in the human body and the minimum measured flow rate. MDPI 2023-03-28 /pmc/articles/PMC10092963/ /pubmed/37046487 http://dx.doi.org/10.3390/diagnostics13071269 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Karseeva, Elina Kolokolnikov, Ilya Medvedeva, Ekaterina Savchenko, Elena Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment |
title | Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment |
title_full | Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment |
title_fullStr | Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment |
title_full_unstemmed | Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment |
title_short | Joint Methodology Based on Optical Densitometry and Dynamic Light Scattering for Liver Function Assessment |
title_sort | joint methodology based on optical densitometry and dynamic light scattering for liver function assessment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10092963/ https://www.ncbi.nlm.nih.gov/pubmed/37046487 http://dx.doi.org/10.3390/diagnostics13071269 |
work_keys_str_mv | AT karseevaelina jointmethodologybasedonopticaldensitometryanddynamiclightscatteringforliverfunctionassessment AT kolokolnikovilya jointmethodologybasedonopticaldensitometryanddynamiclightscatteringforliverfunctionassessment AT medvedevaekaterina jointmethodologybasedonopticaldensitometryanddynamiclightscatteringforliverfunctionassessment AT savchenkoelena jointmethodologybasedonopticaldensitometryanddynamiclightscatteringforliverfunctionassessment |