Cargando…
BC(2)NetRF: Breast Cancer Classification from Mammogram Images Using Enhanced Deep Learning Features and Equilibrium-Jaya Controlled Regula Falsi-Based Features Selection
One of the most frequent cancers in women is breast cancer, and in the year 2022, approximately 287,850 new cases have been diagnosed. From them, 43,250 women died from this cancer. An early diagnosis of this cancer can help to overcome the mortality rate. However, the manual diagnosis of this cance...
Autores principales: | Jabeen, Kiran, Khan, Muhammad Attique, Balili, Jamel, Alhaisoni, Majed, Almujally, Nouf Abdullah, Alrashidi, Huda, Tariq, Usman, Cha, Jae-Hyuk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093018/ https://www.ncbi.nlm.nih.gov/pubmed/37046456 http://dx.doi.org/10.3390/diagnostics13071238 |
Ejemplares similares
-
BRMI-Net: Deep Learning Features and Flower Pollination-Controlled Regula Falsi-Based Feature Selection Framework for Breast Cancer Recognition in Mammography Images
por: Rehman, Shams ur, et al.
Publicado: (2023) -
Breast Cancer Classification from Ultrasound Images Using Probability-Based Optimal Deep Learning Feature Fusion
por: Jabeen, Kiran, et al.
Publicado: (2022) -
Graph drawing using Jaya
por: Dib, Fadi K., et al.
Publicado: (2023) -
BrainNet: Optimal Deep Learning Feature Fusion for Brain Tumor Classification
por: Zahid, Usman, et al.
Publicado: (2022) -
Human Gait Recognition: A Single Stream Optimal Deep Learning Features Fusion
por: Saleem, Faizan, et al.
Publicado: (2021)