Cargando…
A Foreground Prototype-Based One-Shot Segmentation of Brain Tumors
The potential for enhancing brain tumor segmentation with few-shot learning is enormous. While several deep learning networks (DNNs) show promising segmentation results, they all take a substantial amount of training data in order to yield appropriate results. Moreover, a prominent problem for most...
Autores principales: | Balasundaram, Ananthakrishnan, Kavitha, Muthu Subash, Pratheepan, Yogarajah, Akshat, Dhamale, Kaushik, Maddirala Venkata |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093064/ https://www.ncbi.nlm.nih.gov/pubmed/37046500 http://dx.doi.org/10.3390/diagnostics13071282 |
Ejemplares similares
-
A Multi-Task Learning Framework for Automated Segmentation and Classification of Breast Tumors From Ultrasound Images
por: Chowdary, Jignesh, et al.
Publicado: (2022) -
Automated Detection and Classification of Oral Squamous Cell Carcinoma Using Deep Neural Networks
por: Ananthakrishnan, Balasundaram, et al.
Publicado: (2023) -
Automated Bone Marrow Cell Classification for Haematological Disease Diagnosis Using Siamese Neural Network
por: Ananthakrishnan, Balasundaram, et al.
Publicado: (2022) -
Foreground Detection Based on Superpixel and Semantic Segmentation
por: Feng, Junying, et al.
Publicado: (2022) -
Robust Pan/Tilt Compensation for Foreground–Background Segmentation
por: Allebosch, Gianni, et al.
Publicado: (2019)