Cargando…
Automated Error Labeling in Radiation Oncology via Statistical Natural Language Processing
A report published in 2000 from the Institute of Medicine revealed that medical errors were a leading cause of patient deaths, and urged the development of error detection and reporting systems. The field of radiation oncology is particularly vulnerable to these errors due to its highly complex proc...
Autores principales: | Ganguly, Indrila, Buhrman, Graham, Kline, Ed, Mun, Seong K., Sengupta, Srijan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093130/ https://www.ncbi.nlm.nih.gov/pubmed/37046433 http://dx.doi.org/10.3390/diagnostics13071215 |
Ejemplares similares
-
Automated identification of diagnostic labelling errors in medicine
por: Hautz, Wolf E., et al.
Publicado: (2021) -
Improving radiation dosimetry with an automated micronucleus scoring system: correction of automated scoring errors
por: Lee, Younghyun, et al.
Publicado: (2023) -
Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology
por: Bibault, Jean-Emmanuel, et al.
Publicado: (2018) -
A natural language processing approach to categorise contributing factors from patient safety event reports
por: Tabaie, Azade, et al.
Publicado: (2023) -
Editorial: Automation and artificial intelligence in radiation oncology
por: Cilla, Savino, et al.
Publicado: (2022)