Cargando…
Olaparib-Resistant BRCA2(MUT) Ovarian Cancer Cells with Restored BRCA2 Abrogate Olaparib-Induced DNA Damage and G2/M Arrest Controlled by the ATR/CHK1 Pathway for Survival
The PARP inhibitor (PARPi) olaparib is currently the drug of choice for serous ovarian cancer (OC), especially in patients with homologous recombination (HR) repair deficiency associated with deleterious BRCA1/2 mutations. Unfortunately, OC patients who fail to respond to PARPi or relapse after trea...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093185/ https://www.ncbi.nlm.nih.gov/pubmed/37048111 http://dx.doi.org/10.3390/cells12071038 |
_version_ | 1785023524773036032 |
---|---|
author | Biegała, Łukasz Gajek, Arkadiusz Marczak, Agnieszka Rogalska, Aneta |
author_facet | Biegała, Łukasz Gajek, Arkadiusz Marczak, Agnieszka Rogalska, Aneta |
author_sort | Biegała, Łukasz |
collection | PubMed |
description | The PARP inhibitor (PARPi) olaparib is currently the drug of choice for serous ovarian cancer (OC), especially in patients with homologous recombination (HR) repair deficiency associated with deleterious BRCA1/2 mutations. Unfortunately, OC patients who fail to respond to PARPi or relapse after treatment have limited therapeutic options. To elucidate olaparib resistance and enhance the efficacy of olaparib, intracellular factors exploited by OC cells to achieve decreased sensitivity to PARPi were examined. An olaparib-resistant OC cell line, PEO1-OR, was established from BRCA2(MUT) PEO1 cells. The anticancer activity and action of olaparib combined with inhibitors of the ATR/CHK1 pathway (ceralasertib as ATRi, MK-8776 as CHK1i) in olaparib-sensitive and -resistant OC cell lines were evaluated. Whole-exome sequencing revealed that PEO1-OR cells acquire resistance through subclonal enrichment of BRCA2 secondary mutations that restore functional full-length protein. Moreover, PEO1-OR cells upregulate HR repair-promoting factors (BRCA1, BRCA2, RAD51) and PARP1. Olaparib-inducible activation of the ATR/CHK1 pathway and G2/M arrest is abrogated in olaparib-resistant cells. Drug sensitivity assays revealed that PEO1-OR cells are less sensitive to ATRi and CHK1i agents. Combined treatment is less effective in olaparib-resistant cells considering inhibition of metabolic activity, colony formation, survival, accumulation of DNA double-strand breaks, and chromosomal aberrations. However, synergistic antitumor activity between compounds is achievable in PEO1-OR cells. Collectively, olaparib-resistant cells display co-existing HR repair-related mechanisms that confer resistance to olaparib, which may be effectively utilized to resensitize them to PARPi via combination therapy. Importantly, the addition of ATR/CHK1 pathway inhibitors to olaparib has the potential to overcome acquired resistance to PARPi. |
format | Online Article Text |
id | pubmed-10093185 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100931852023-04-13 Olaparib-Resistant BRCA2(MUT) Ovarian Cancer Cells with Restored BRCA2 Abrogate Olaparib-Induced DNA Damage and G2/M Arrest Controlled by the ATR/CHK1 Pathway for Survival Biegała, Łukasz Gajek, Arkadiusz Marczak, Agnieszka Rogalska, Aneta Cells Article The PARP inhibitor (PARPi) olaparib is currently the drug of choice for serous ovarian cancer (OC), especially in patients with homologous recombination (HR) repair deficiency associated with deleterious BRCA1/2 mutations. Unfortunately, OC patients who fail to respond to PARPi or relapse after treatment have limited therapeutic options. To elucidate olaparib resistance and enhance the efficacy of olaparib, intracellular factors exploited by OC cells to achieve decreased sensitivity to PARPi were examined. An olaparib-resistant OC cell line, PEO1-OR, was established from BRCA2(MUT) PEO1 cells. The anticancer activity and action of olaparib combined with inhibitors of the ATR/CHK1 pathway (ceralasertib as ATRi, MK-8776 as CHK1i) in olaparib-sensitive and -resistant OC cell lines were evaluated. Whole-exome sequencing revealed that PEO1-OR cells acquire resistance through subclonal enrichment of BRCA2 secondary mutations that restore functional full-length protein. Moreover, PEO1-OR cells upregulate HR repair-promoting factors (BRCA1, BRCA2, RAD51) and PARP1. Olaparib-inducible activation of the ATR/CHK1 pathway and G2/M arrest is abrogated in olaparib-resistant cells. Drug sensitivity assays revealed that PEO1-OR cells are less sensitive to ATRi and CHK1i agents. Combined treatment is less effective in olaparib-resistant cells considering inhibition of metabolic activity, colony formation, survival, accumulation of DNA double-strand breaks, and chromosomal aberrations. However, synergistic antitumor activity between compounds is achievable in PEO1-OR cells. Collectively, olaparib-resistant cells display co-existing HR repair-related mechanisms that confer resistance to olaparib, which may be effectively utilized to resensitize them to PARPi via combination therapy. Importantly, the addition of ATR/CHK1 pathway inhibitors to olaparib has the potential to overcome acquired resistance to PARPi. MDPI 2023-03-29 /pmc/articles/PMC10093185/ /pubmed/37048111 http://dx.doi.org/10.3390/cells12071038 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Biegała, Łukasz Gajek, Arkadiusz Marczak, Agnieszka Rogalska, Aneta Olaparib-Resistant BRCA2(MUT) Ovarian Cancer Cells with Restored BRCA2 Abrogate Olaparib-Induced DNA Damage and G2/M Arrest Controlled by the ATR/CHK1 Pathway for Survival |
title | Olaparib-Resistant BRCA2(MUT) Ovarian Cancer Cells with Restored BRCA2 Abrogate Olaparib-Induced DNA Damage and G2/M Arrest Controlled by the ATR/CHK1 Pathway for Survival |
title_full | Olaparib-Resistant BRCA2(MUT) Ovarian Cancer Cells with Restored BRCA2 Abrogate Olaparib-Induced DNA Damage and G2/M Arrest Controlled by the ATR/CHK1 Pathway for Survival |
title_fullStr | Olaparib-Resistant BRCA2(MUT) Ovarian Cancer Cells with Restored BRCA2 Abrogate Olaparib-Induced DNA Damage and G2/M Arrest Controlled by the ATR/CHK1 Pathway for Survival |
title_full_unstemmed | Olaparib-Resistant BRCA2(MUT) Ovarian Cancer Cells with Restored BRCA2 Abrogate Olaparib-Induced DNA Damage and G2/M Arrest Controlled by the ATR/CHK1 Pathway for Survival |
title_short | Olaparib-Resistant BRCA2(MUT) Ovarian Cancer Cells with Restored BRCA2 Abrogate Olaparib-Induced DNA Damage and G2/M Arrest Controlled by the ATR/CHK1 Pathway for Survival |
title_sort | olaparib-resistant brca2(mut) ovarian cancer cells with restored brca2 abrogate olaparib-induced dna damage and g2/m arrest controlled by the atr/chk1 pathway for survival |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093185/ https://www.ncbi.nlm.nih.gov/pubmed/37048111 http://dx.doi.org/10.3390/cells12071038 |
work_keys_str_mv | AT biegałałukasz olaparibresistantbrca2mutovariancancercellswithrestoredbrca2abrogateolaparibinduceddnadamageandg2marrestcontrolledbytheatrchk1pathwayforsurvival AT gajekarkadiusz olaparibresistantbrca2mutovariancancercellswithrestoredbrca2abrogateolaparibinduceddnadamageandg2marrestcontrolledbytheatrchk1pathwayforsurvival AT marczakagnieszka olaparibresistantbrca2mutovariancancercellswithrestoredbrca2abrogateolaparibinduceddnadamageandg2marrestcontrolledbytheatrchk1pathwayforsurvival AT rogalskaaneta olaparibresistantbrca2mutovariancancercellswithrestoredbrca2abrogateolaparibinduceddnadamageandg2marrestcontrolledbytheatrchk1pathwayforsurvival |