Cargando…

Biosynthesis and Significance of Fatty Acids, Glycerophospholipids, and Triacylglycerol in the Processes of Glioblastoma Tumorigenesis

SIMPLE SUMMARY: This review discusses the synthesis and significance of fatty acids, glycerophospholipids, and triacylglycerol in glioblastoma. The focus is on all enzymes involved in the synthesis of these lipids, highlighting their roles in the tumorigenesis of glioblastoma. Due to the fact that t...

Descripción completa

Detalles Bibliográficos
Autores principales: Korbecki, Jan, Bosiacki, Mateusz, Gutowska, Izabela, Chlubek, Dariusz, Baranowska-Bosiacka, Irena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093493/
https://www.ncbi.nlm.nih.gov/pubmed/37046844
http://dx.doi.org/10.3390/cancers15072183
Descripción
Sumario:SIMPLE SUMMARY: This review discusses the synthesis and significance of fatty acids, glycerophospholipids, and triacylglycerol in glioblastoma. The focus is on all enzymes involved in the synthesis of these lipids, highlighting their roles in the tumorigenesis of glioblastoma. Due to the fact that the role of many of these enzymes in glioblastoma tumorigenesis remains unexplored, we conducted a bioinformatic analysis based on the GEPIA database to indicate their possible functions and significance. Specific properties of certain enzymes were also described to indicate their functions in the tumorigenesis of glioblastoma better. ABSTRACT: One area of glioblastoma research is the metabolism of tumor cells and detecting differences between tumor and healthy brain tissue metabolism. Here, we review differences in fatty acid metabolism, with a particular focus on the biosynthesis of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA) by fatty acid synthase (FASN), elongases, and desaturases. We also describe the significance of individual fatty acids in glioblastoma tumorigenesis, as well as the importance of glycerophospholipid and triacylglycerol synthesis in this process. Specifically, we show the significance and function of various isoforms of glycerol-3-phosphate acyltransferases (GPAT), 1-acylglycerol-3-phosphate O-acyltransferases (AGPAT), lipins, as well as enzymes involved in the synthesis of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), and cardiolipin (CL). This review also highlights the involvement of diacylglycerol O-acyltransferase (DGAT) in triacylglycerol biosynthesis. Due to significant gaps in knowledge, the GEPIA database was utilized to demonstrate the significance of individual enzymes in glioblastoma tumorigenesis. Finally, we also describe the significance of lipid droplets in glioblastoma and the impact of fatty acid synthesis, particularly docosahexaenoic acid (DHA), on cell membrane fluidity and signal transduction from the epidermal growth factor receptor (EGFR).