Cargando…
CBCT-to-CT Translation Using Registration-Based Generative Adversarial Networks in Patients with Head and Neck Cancer
SIMPLE SUMMARY: Cone-beam computed tomography (CBCT) not only plays an important role in image-guided radiation therapy (IGRT) but also has the potential for dose calculation. Because CBCT suffers from poor image quality and uncertainties in the Hounsfield unit (HU) values, the accuracy of dose calc...
Autores principales: | Suwanraksa, Chitchaya, Bridhikitti, Jidapa, Liamsuwan, Thiansin, Chaichulee, Sitthichok |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093508/ https://www.ncbi.nlm.nih.gov/pubmed/37046678 http://dx.doi.org/10.3390/cancers15072017 |
Ejemplares similares
-
Generating synthesized computed tomography from CBCT using
a conditional generative adversarial
network for head and neck
cancer patients
por: Zhang, Yun, et al.
Publicado: (2022) -
The Utility of Cloud Computing in Analyzing GPU-Accelerated Deformable Image Registration of CT and CBCT Images in Head and Neck Cancer Radiation Therapy
Publicado: (2016) -
Methodology for Registration of Shrinkage Tumors in Head-and-Neck CT Studies
por: Wang, Jianhua, et al.
Publicado: (2015) -
Feature Explanations in Recurrent Neural Networks for Predicting Risk of Mortality in Intensive Care Patients
por: Na Pattalung, Thanakron, et al.
Publicado: (2021) -
Review of Generative Adversarial Networks in mono- and cross-modal biomedical image registration
por: Han, Tingting, et al.
Publicado: (2022)