Cargando…
Empirical Study of Overfitting in Deep Learning for Predicting Breast Cancer Metastasis
SIMPLE SUMMARY: It is important to be able to effectively predict the likelihood of breast cancer metastasis to potentially help make treatment plans for a patient. We developed a type of deep learning models called feedforward neural network (FNN) models to predict breast cancer metastasis using cl...
Autores principales: | Xu, Chuhan, Coen-Pirani, Pablo, Jiang, Xia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093528/ https://www.ncbi.nlm.nih.gov/pubmed/37046630 http://dx.doi.org/10.3390/cancers15071969 |
Ejemplares similares
-
Deep Learning and Machine Learning with Grid Search to Predict Later Occurrence of Breast Cancer Metastasis Using Clinical Data
por: Jiang, Xia, et al.
Publicado: (2022) -
An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data
por: Peng, Yaohao, et al.
Publicado: (2020) -
Overfit deep neural network for predicting drug-target interactions
por: Xiaolin, Xiao, et al.
Publicado: (2023) -
The overfitted brain hypothesis
por: Prince, Luke Y., et al.
Publicado: (2021) -
Predictive overfitting in immunological applications: Pitfalls and solutions
por: Gygi, Jeremy P., et al.
Publicado: (2023)