Cargando…

Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients

SIMPLE SUMMARY: Early diagnosis and accurate prognosis is essential to personalize treatment and improve the survival of melanoma patients. We report here a new tool that can improve the early diagnosis of melanoma through the use of epiluminescence dermatoscopy and deep learning image analysis. By...

Descripción completa

Detalles Bibliográficos
Autores principales: Diaz-Ramón, Jose Luis, Gardeazabal, Jesus, Izu, Rosa Maria, Garrote, Estibaliz, Rasero, Javier, Apraiz, Aintzane, Penas, Cristina, Seijo, Sandra, Lopez-Saratxaga, Cristina, De la Peña, Pedro Maria, Sanchez-Diaz, Ana, Cancho-Galan, Goikoane, Velasco, Veronica, Sevilla, Arrate, Fernandez, David, Cuenca, Iciar, Cortes, Jesus María, Alonso, Santos, Asumendi, Aintzane, Boyano, María Dolores
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093614/
https://www.ncbi.nlm.nih.gov/pubmed/37046835
http://dx.doi.org/10.3390/cancers15072174
_version_ 1785023628760317952
author Diaz-Ramón, Jose Luis
Gardeazabal, Jesus
Izu, Rosa Maria
Garrote, Estibaliz
Rasero, Javier
Apraiz, Aintzane
Penas, Cristina
Seijo, Sandra
Lopez-Saratxaga, Cristina
De la Peña, Pedro Maria
Sanchez-Diaz, Ana
Cancho-Galan, Goikoane
Velasco, Veronica
Sevilla, Arrate
Fernandez, David
Cuenca, Iciar
Cortes, Jesus María
Alonso, Santos
Asumendi, Aintzane
Boyano, María Dolores
author_facet Diaz-Ramón, Jose Luis
Gardeazabal, Jesus
Izu, Rosa Maria
Garrote, Estibaliz
Rasero, Javier
Apraiz, Aintzane
Penas, Cristina
Seijo, Sandra
Lopez-Saratxaga, Cristina
De la Peña, Pedro Maria
Sanchez-Diaz, Ana
Cancho-Galan, Goikoane
Velasco, Veronica
Sevilla, Arrate
Fernandez, David
Cuenca, Iciar
Cortes, Jesus María
Alonso, Santos
Asumendi, Aintzane
Boyano, María Dolores
author_sort Diaz-Ramón, Jose Luis
collection PubMed
description SIMPLE SUMMARY: Early diagnosis and accurate prognosis is essential to personalize treatment and improve the survival of melanoma patients. We report here a new tool that can improve the early diagnosis of melanoma through the use of epiluminescence dermatoscopy and deep learning image analysis. By employing artificial intelligence algorithms to analyze simple serological and histopathological biomarkers, the risk of metastasis and the disease-free interval of melanoma patients can be accurately predicted. This low-cost Melanoma Clinical Decision Support System represents an effective tool to help clinicians manage melanoma patients. ABSTRACT: This study set out to assess the performance of an artificial intelligence (AI) algorithm based on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to define the metastatic progression of melanoma through serological and histopathological biomarkers, enabling dermatologists to make more informed decisions about patient management. Integrated analysis of demographic data, images of the skin lesions, and serum and histopathological markers were analyzed in a group of 196 patients with melanoma. The interleukins (ILs) IL-4, IL-6, IL-10, and IL-17A as well as IFNγ (interferon), GM-CSF (granulocyte and macrophage colony-stimulating factor), TGFβ (transforming growth factor), and the protein DCD (dermcidin) were quantified in the serum of melanoma patients at the time of diagnosis, and the expression of the RKIP, PIRIN, BCL2, BCL3, MITF, and ANXA5 proteins was detected by immunohistochemistry (IHC) in melanoma biopsies. An AI algorithm was used to improve the early diagnosis of melanoma and to predict the risk of metastasis and of disease-free survival. Two models were obtained to predict metastasis (including “all patients” or only patients “at early stages of melanoma”), and a series of attributes were seen to predict the progression of metastasis: Breslow thickness, infiltrating BCL-2 expressing lymphocytes, and IL-4 and IL-6 serum levels. Importantly, a decrease in serum GM-CSF seems to be a marker of poor prognosis in patients with early-stage melanomas.
format Online
Article
Text
id pubmed-10093614
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100936142023-04-13 Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients Diaz-Ramón, Jose Luis Gardeazabal, Jesus Izu, Rosa Maria Garrote, Estibaliz Rasero, Javier Apraiz, Aintzane Penas, Cristina Seijo, Sandra Lopez-Saratxaga, Cristina De la Peña, Pedro Maria Sanchez-Diaz, Ana Cancho-Galan, Goikoane Velasco, Veronica Sevilla, Arrate Fernandez, David Cuenca, Iciar Cortes, Jesus María Alonso, Santos Asumendi, Aintzane Boyano, María Dolores Cancers (Basel) Article SIMPLE SUMMARY: Early diagnosis and accurate prognosis is essential to personalize treatment and improve the survival of melanoma patients. We report here a new tool that can improve the early diagnosis of melanoma through the use of epiluminescence dermatoscopy and deep learning image analysis. By employing artificial intelligence algorithms to analyze simple serological and histopathological biomarkers, the risk of metastasis and the disease-free interval of melanoma patients can be accurately predicted. This low-cost Melanoma Clinical Decision Support System represents an effective tool to help clinicians manage melanoma patients. ABSTRACT: This study set out to assess the performance of an artificial intelligence (AI) algorithm based on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to define the metastatic progression of melanoma through serological and histopathological biomarkers, enabling dermatologists to make more informed decisions about patient management. Integrated analysis of demographic data, images of the skin lesions, and serum and histopathological markers were analyzed in a group of 196 patients with melanoma. The interleukins (ILs) IL-4, IL-6, IL-10, and IL-17A as well as IFNγ (interferon), GM-CSF (granulocyte and macrophage colony-stimulating factor), TGFβ (transforming growth factor), and the protein DCD (dermcidin) were quantified in the serum of melanoma patients at the time of diagnosis, and the expression of the RKIP, PIRIN, BCL2, BCL3, MITF, and ANXA5 proteins was detected by immunohistochemistry (IHC) in melanoma biopsies. An AI algorithm was used to improve the early diagnosis of melanoma and to predict the risk of metastasis and of disease-free survival. Two models were obtained to predict metastasis (including “all patients” or only patients “at early stages of melanoma”), and a series of attributes were seen to predict the progression of metastasis: Breslow thickness, infiltrating BCL-2 expressing lymphocytes, and IL-4 and IL-6 serum levels. Importantly, a decrease in serum GM-CSF seems to be a marker of poor prognosis in patients with early-stage melanomas. MDPI 2023-04-06 /pmc/articles/PMC10093614/ /pubmed/37046835 http://dx.doi.org/10.3390/cancers15072174 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Diaz-Ramón, Jose Luis
Gardeazabal, Jesus
Izu, Rosa Maria
Garrote, Estibaliz
Rasero, Javier
Apraiz, Aintzane
Penas, Cristina
Seijo, Sandra
Lopez-Saratxaga, Cristina
De la Peña, Pedro Maria
Sanchez-Diaz, Ana
Cancho-Galan, Goikoane
Velasco, Veronica
Sevilla, Arrate
Fernandez, David
Cuenca, Iciar
Cortes, Jesus María
Alonso, Santos
Asumendi, Aintzane
Boyano, María Dolores
Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients
title Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients
title_full Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients
title_fullStr Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients
title_full_unstemmed Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients
title_short Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients
title_sort melanoma clinical decision support system: an artificial intelligence-based tool to diagnose and predict disease outcome in early-stage melanoma patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093614/
https://www.ncbi.nlm.nih.gov/pubmed/37046835
http://dx.doi.org/10.3390/cancers15072174
work_keys_str_mv AT diazramonjoseluis melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT gardeazabaljesus melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT izurosamaria melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT garroteestibaliz melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT raserojavier melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT apraizaintzane melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT penascristina melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT seijosandra melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT lopezsaratxagacristina melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT delapenapedromaria melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT sanchezdiazana melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT canchogalangoikoane melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT velascoveronica melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT sevillaarrate melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT fernandezdavid melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT cuencaiciar melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT cortesjesusmaria melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT alonsosantos melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT asumendiaintzane melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients
AT boyanomariadolores melanomaclinicaldecisionsupportsystemanartificialintelligencebasedtooltodiagnoseandpredictdiseaseoutcomeinearlystagemelanomapatients