Cargando…

Multimodal Data Integration to Predict Severe Acute Oral Mucositis of Nasopharyngeal Carcinoma Patients Following Radiation Therapy

SIMPLE SUMMARY: The acute oral mucositis (AOM) is a prevalent side effect of radiation therapy for nasopharyngeal carcinoma (NPC). Severe AOM could impair the survival and quality of life for NPC patients. Accurate method to predict the incidence of severe AOM can aid clinicians in adjusting the tre...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Yanjing, Zhang, Jiang, Lam, Saikt, Zhang, Xinyu, Liu, Anran, Teng, Xinzhi, Han, Xinyang, Cao, Jin, Li, Hongxiang, Lee, Francis Karho, Yip, Celia Waiyi, Au, Kwokhung, Zhang, Yuanpeng, Cai, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093711/
https://www.ncbi.nlm.nih.gov/pubmed/37046693
http://dx.doi.org/10.3390/cancers15072032
Descripción
Sumario:SIMPLE SUMMARY: The acute oral mucositis (AOM) is a prevalent side effect of radiation therapy for nasopharyngeal carcinoma (NPC). Severe AOM could impair the survival and quality of life for NPC patients. Accurate method to predict the incidence of severe AOM can aid clinicians in adjusting the treatment plan to improve the outcomes for NPC patients. We integrated multi-modalities, multi-omics and multi-regions data with two methods, integrate the original data or combine data after feature selection. The performance of models using each data integration method with different modalities, types of data and VOIs were analyzed. We developed a best-performing model with mean AUC at 0.81 ± 0.10 to predict the incidence of severe AOM for NPC patients following radiation therapy. ABSTRACT: (1) Background: Acute oral mucositis is the most common side effect for nasopharyngeal carcinoma patients receiving radiotherapy. Improper or delayed intervention to severe AOM could degrade the quality of life or survival for NPC patients. An effective prediction method for severe AOM is needed for the individualized management of NPC patients in the era of personalized medicine. (2) Methods: A total of 242 biopsy-proven NPC patients were retrospectively recruited in this study. Radiomics features were extracted from contrast-enhanced CT (CECT), contrast-enhanced T1-weighted (cT1WI), and T2-weighted (T2WI) images in the primary tumor and tumor-related area. Dosiomics features were extracted from 2D or 3D dose-volume histograms (DVH). Multiple models were established with single and integrated data. The dataset was randomized into training and test sets at a ratio of 7:3 with 10-fold cross-validation. (3) Results: The best-performing model using Gaussian Naive Bayes (GNB) (mean validation AUC = 0.81 ± 0.10) was established with integrated radiomics and dosiomics data. The GNB radiomics and dosiomics models yielded mean validation AUC of 0.6 ± 0.20 and 0.69 ± 0.14, respectively. (4) Conclusions: Integrating radiomics and dosiomics data from the primary tumor area could generate the best-performing model for severe AOM prediction.