Cargando…

A Machine Learning Method for the Quality Detection of Base Liquor and Commercial Liquor Using Multidimensional Signals from an Electronic Nose

Chinese liquor is a world-famous beverage with a long history. Base liquor, a product of liquor brewing, significantly affects the flavor and quality of commercial liquor. In this study, a machine learning method consisting of a deep residual network (ResNet)18 backbone with a light gradient boostin...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Bingyang, Gu, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094000/
https://www.ncbi.nlm.nih.gov/pubmed/37048329
http://dx.doi.org/10.3390/foods12071508
_version_ 1785023733147107328
author Li, Bingyang
Gu, Yu
author_facet Li, Bingyang
Gu, Yu
author_sort Li, Bingyang
collection PubMed
description Chinese liquor is a world-famous beverage with a long history. Base liquor, a product of liquor brewing, significantly affects the flavor and quality of commercial liquor. In this study, a machine learning method consisting of a deep residual network (ResNet)18 backbone with a light gradient boosting machine (LightGBM) classifier (ResNet-GBM) is proposed for the quality identification of base liquor and commercial liquor using multidimensional signals from an electronic nose (E-Nose). Ablation experiments are conducted to analyze the contribution of the framework’s components. Five evaluation metrics (accuracy, sensitivity, precision, F1 score, and kappa score) are used to verify the performance of the proposed method, and six other frameworks (support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), extreme gradient boosting (XGBoost), multidimensional scaling-support vector machine (MDS-SVM), and back-propagation neural network (BPNN)) on three datasets (base liquor, commercial liquor, and mixed base and commercial liquor datasets). The experimental results demonstrate that the proposed ResNet-GBM model achieves the best performance for identifying base liquor and commercial liquors with different qualities. The proposed framework has the highest F1 score for the identification of commercial liquor in the mixed dataset due to the contribution of similar microconstituents from the base liquor. The proposed method can be used for the quality control of Chinese liquor and promotes the practical application of E-nose devices.
format Online
Article
Text
id pubmed-10094000
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100940002023-04-13 A Machine Learning Method for the Quality Detection of Base Liquor and Commercial Liquor Using Multidimensional Signals from an Electronic Nose Li, Bingyang Gu, Yu Foods Article Chinese liquor is a world-famous beverage with a long history. Base liquor, a product of liquor brewing, significantly affects the flavor and quality of commercial liquor. In this study, a machine learning method consisting of a deep residual network (ResNet)18 backbone with a light gradient boosting machine (LightGBM) classifier (ResNet-GBM) is proposed for the quality identification of base liquor and commercial liquor using multidimensional signals from an electronic nose (E-Nose). Ablation experiments are conducted to analyze the contribution of the framework’s components. Five evaluation metrics (accuracy, sensitivity, precision, F1 score, and kappa score) are used to verify the performance of the proposed method, and six other frameworks (support vector machine (SVM), random forest (RF), k-nearest neighbor (KNN), extreme gradient boosting (XGBoost), multidimensional scaling-support vector machine (MDS-SVM), and back-propagation neural network (BPNN)) on three datasets (base liquor, commercial liquor, and mixed base and commercial liquor datasets). The experimental results demonstrate that the proposed ResNet-GBM model achieves the best performance for identifying base liquor and commercial liquors with different qualities. The proposed framework has the highest F1 score for the identification of commercial liquor in the mixed dataset due to the contribution of similar microconstituents from the base liquor. The proposed method can be used for the quality control of Chinese liquor and promotes the practical application of E-nose devices. MDPI 2023-04-03 /pmc/articles/PMC10094000/ /pubmed/37048329 http://dx.doi.org/10.3390/foods12071508 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Li, Bingyang
Gu, Yu
A Machine Learning Method for the Quality Detection of Base Liquor and Commercial Liquor Using Multidimensional Signals from an Electronic Nose
title A Machine Learning Method for the Quality Detection of Base Liquor and Commercial Liquor Using Multidimensional Signals from an Electronic Nose
title_full A Machine Learning Method for the Quality Detection of Base Liquor and Commercial Liquor Using Multidimensional Signals from an Electronic Nose
title_fullStr A Machine Learning Method for the Quality Detection of Base Liquor and Commercial Liquor Using Multidimensional Signals from an Electronic Nose
title_full_unstemmed A Machine Learning Method for the Quality Detection of Base Liquor and Commercial Liquor Using Multidimensional Signals from an Electronic Nose
title_short A Machine Learning Method for the Quality Detection of Base Liquor and Commercial Liquor Using Multidimensional Signals from an Electronic Nose
title_sort machine learning method for the quality detection of base liquor and commercial liquor using multidimensional signals from an electronic nose
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094000/
https://www.ncbi.nlm.nih.gov/pubmed/37048329
http://dx.doi.org/10.3390/foods12071508
work_keys_str_mv AT libingyang amachinelearningmethodforthequalitydetectionofbaseliquorandcommercialliquorusingmultidimensionalsignalsfromanelectronicnose
AT guyu amachinelearningmethodforthequalitydetectionofbaseliquorandcommercialliquorusingmultidimensionalsignalsfromanelectronicnose
AT libingyang machinelearningmethodforthequalitydetectionofbaseliquorandcommercialliquorusingmultidimensionalsignalsfromanelectronicnose
AT guyu machinelearningmethodforthequalitydetectionofbaseliquorandcommercialliquorusingmultidimensionalsignalsfromanelectronicnose