Cargando…

Techno-Functional and Rheological Properties of Alternative Plant-Based Flours

The use of alternative vegetal sources is a proposed strategy to improve the diversity and quality of plant-based products on the market, currently led by soy and pea. This study compares the techno-functional properties of seven vegetable flours (chickpea, lentil, red lentil, white bean, quinoa, am...

Descripción completa

Detalles Bibliográficos
Autores principales: Badia-Olmos, Celia, Laguna, Laura, Haros, Claudia Mónika, Tárrega, Amparo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094013/
https://www.ncbi.nlm.nih.gov/pubmed/37048232
http://dx.doi.org/10.3390/foods12071411
_version_ 1785023735810490368
author Badia-Olmos, Celia
Laguna, Laura
Haros, Claudia Mónika
Tárrega, Amparo
author_facet Badia-Olmos, Celia
Laguna, Laura
Haros, Claudia Mónika
Tárrega, Amparo
author_sort Badia-Olmos, Celia
collection PubMed
description The use of alternative vegetal sources is a proposed strategy to improve the diversity and quality of plant-based products on the market, currently led by soy and pea. This study compares the techno-functional properties of seven vegetable flours (chickpea, lentil, red lentil, white bean, quinoa, amaranth, and oat) and the rheological properties of their flour pastes and gels. All techno-functional properties significantly (α = 0.05) varied depending on the type of flour. Among the flours studied, the highest swelling capacity was for white bean and the lowest for chickpea and red lentil. Water holding capacity was high for white bean and oat flours and low for red lentil. Oat and quinoa flours had the highest oil-holding capacity. Emulsifying and foaming capacities were high for all pulse flours but poor for amaranth and oat flours. However, amaranth and oat provided a much higher viscosity during heating than the rest of the flours. The viscoelastic properties of the flour pastes indicated that they all had a gel structure with storage modulus (G′) values over loss modulus (G″) values. From the viscoelastic properties, amaranth and quinoa showed a weak gel structure with low G′ and G″ values, and the chickpea, lentil, and red lentil formed pastes with a high elastic contribution (high G′ values). In agreement, these three pulse flours were the only ones able to form hard, self-standing gels. These results show the potential of vegetal flours from alternative sources in the development of new plant-based products.
format Online
Article
Text
id pubmed-10094013
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100940132023-04-13 Techno-Functional and Rheological Properties of Alternative Plant-Based Flours Badia-Olmos, Celia Laguna, Laura Haros, Claudia Mónika Tárrega, Amparo Foods Article The use of alternative vegetal sources is a proposed strategy to improve the diversity and quality of plant-based products on the market, currently led by soy and pea. This study compares the techno-functional properties of seven vegetable flours (chickpea, lentil, red lentil, white bean, quinoa, amaranth, and oat) and the rheological properties of their flour pastes and gels. All techno-functional properties significantly (α = 0.05) varied depending on the type of flour. Among the flours studied, the highest swelling capacity was for white bean and the lowest for chickpea and red lentil. Water holding capacity was high for white bean and oat flours and low for red lentil. Oat and quinoa flours had the highest oil-holding capacity. Emulsifying and foaming capacities were high for all pulse flours but poor for amaranth and oat flours. However, amaranth and oat provided a much higher viscosity during heating than the rest of the flours. The viscoelastic properties of the flour pastes indicated that they all had a gel structure with storage modulus (G′) values over loss modulus (G″) values. From the viscoelastic properties, amaranth and quinoa showed a weak gel structure with low G′ and G″ values, and the chickpea, lentil, and red lentil formed pastes with a high elastic contribution (high G′ values). In agreement, these three pulse flours were the only ones able to form hard, self-standing gels. These results show the potential of vegetal flours from alternative sources in the development of new plant-based products. MDPI 2023-03-26 /pmc/articles/PMC10094013/ /pubmed/37048232 http://dx.doi.org/10.3390/foods12071411 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Badia-Olmos, Celia
Laguna, Laura
Haros, Claudia Mónika
Tárrega, Amparo
Techno-Functional and Rheological Properties of Alternative Plant-Based Flours
title Techno-Functional and Rheological Properties of Alternative Plant-Based Flours
title_full Techno-Functional and Rheological Properties of Alternative Plant-Based Flours
title_fullStr Techno-Functional and Rheological Properties of Alternative Plant-Based Flours
title_full_unstemmed Techno-Functional and Rheological Properties of Alternative Plant-Based Flours
title_short Techno-Functional and Rheological Properties of Alternative Plant-Based Flours
title_sort techno-functional and rheological properties of alternative plant-based flours
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094013/
https://www.ncbi.nlm.nih.gov/pubmed/37048232
http://dx.doi.org/10.3390/foods12071411
work_keys_str_mv AT badiaolmoscelia technofunctionalandrheologicalpropertiesofalternativeplantbasedflours
AT lagunalaura technofunctionalandrheologicalpropertiesofalternativeplantbasedflours
AT harosclaudiamonika technofunctionalandrheologicalpropertiesofalternativeplantbasedflours
AT tarregaamparo technofunctionalandrheologicalpropertiesofalternativeplantbasedflours