Cargando…

Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing

The study reveals the polymer–crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core–shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Kan, Yuliya, Bondareva, Julia V., Statnik, Eugene S., Koudan, Elizaveta V., Ippolitov, Evgeniy V., Podporin, Mikhail S., Kovaleva, Polina A., Kapaev, Roman R., Gordeeva, Alexandra M., Cvjetinovic, Julijana, Gorin, Dmitry A., Evlashin, Stanislav A., Salimon, Alexey I., Senatov, Fedor S., Korsunsky, Alexander M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094162/
https://www.ncbi.nlm.nih.gov/pubmed/37047227
http://dx.doi.org/10.3390/ijms24076255
_version_ 1785023772714074112
author Kan, Yuliya
Bondareva, Julia V.
Statnik, Eugene S.
Koudan, Elizaveta V.
Ippolitov, Evgeniy V.
Podporin, Mikhail S.
Kovaleva, Polina A.
Kapaev, Roman R.
Gordeeva, Alexandra M.
Cvjetinovic, Julijana
Gorin, Dmitry A.
Evlashin, Stanislav A.
Salimon, Alexey I.
Senatov, Fedor S.
Korsunsky, Alexander M.
author_facet Kan, Yuliya
Bondareva, Julia V.
Statnik, Eugene S.
Koudan, Elizaveta V.
Ippolitov, Evgeniy V.
Podporin, Mikhail S.
Kovaleva, Polina A.
Kapaev, Roman R.
Gordeeva, Alexandra M.
Cvjetinovic, Julijana
Gorin, Dmitry A.
Evlashin, Stanislav A.
Salimon, Alexey I.
Senatov, Fedor S.
Korsunsky, Alexander M.
author_sort Kan, Yuliya
collection PubMed
description The study reveals the polymer–crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core–shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol with amorphous silica (PVA-PEG-SiO(2)), and a shell originating from polyvinyl alcohol and graphene oxide (PVA-GO). Crosslinking with GO and SiO(2) initiates the hydrogel transition for the fiber composite upon contact with moisture, which aims to optimize the drug release. The effect of hydrogel-inducing additives on the drug kinetics is evaluated in the case of chlorhexidine digluconate (CHX) encapsulation in the core of core–shell fiber composite PVA-PEG-SiO(2)-1x-CHX@PVA-GO. The release rate is assessed with the zero, first-order, Higuchi, and Korsmeyer–Peppas kinetic models, where the inclusion of crosslinking silica provides a longer degradation and release rate. CHX medicated core–shell composite provides sustainable antibacterial activity against Staphylococcus aureus.
format Online
Article
Text
id pubmed-10094162
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100941622023-04-13 Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing Kan, Yuliya Bondareva, Julia V. Statnik, Eugene S. Koudan, Elizaveta V. Ippolitov, Evgeniy V. Podporin, Mikhail S. Kovaleva, Polina A. Kapaev, Roman R. Gordeeva, Alexandra M. Cvjetinovic, Julijana Gorin, Dmitry A. Evlashin, Stanislav A. Salimon, Alexey I. Senatov, Fedor S. Korsunsky, Alexander M. Int J Mol Sci Article The study reveals the polymer–crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core–shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol with amorphous silica (PVA-PEG-SiO(2)), and a shell originating from polyvinyl alcohol and graphene oxide (PVA-GO). Crosslinking with GO and SiO(2) initiates the hydrogel transition for the fiber composite upon contact with moisture, which aims to optimize the drug release. The effect of hydrogel-inducing additives on the drug kinetics is evaluated in the case of chlorhexidine digluconate (CHX) encapsulation in the core of core–shell fiber composite PVA-PEG-SiO(2)-1x-CHX@PVA-GO. The release rate is assessed with the zero, first-order, Higuchi, and Korsmeyer–Peppas kinetic models, where the inclusion of crosslinking silica provides a longer degradation and release rate. CHX medicated core–shell composite provides sustainable antibacterial activity against Staphylococcus aureus. MDPI 2023-03-26 /pmc/articles/PMC10094162/ /pubmed/37047227 http://dx.doi.org/10.3390/ijms24076255 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Kan, Yuliya
Bondareva, Julia V.
Statnik, Eugene S.
Koudan, Elizaveta V.
Ippolitov, Evgeniy V.
Podporin, Mikhail S.
Kovaleva, Polina A.
Kapaev, Roman R.
Gordeeva, Alexandra M.
Cvjetinovic, Julijana
Gorin, Dmitry A.
Evlashin, Stanislav A.
Salimon, Alexey I.
Senatov, Fedor S.
Korsunsky, Alexander M.
Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing
title Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing
title_full Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing
title_fullStr Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing
title_full_unstemmed Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing
title_short Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing
title_sort hydrogel-inducing graphene-oxide-derived core–shell fiber composite for antibacterial wound dressing
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094162/
https://www.ncbi.nlm.nih.gov/pubmed/37047227
http://dx.doi.org/10.3390/ijms24076255
work_keys_str_mv AT kanyuliya hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT bondarevajuliav hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT statnikeugenes hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT koudanelizavetav hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT ippolitovevgeniyv hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT podporinmikhails hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT kovalevapolinaa hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT kapaevromanr hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT gordeevaalexandram hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT cvjetinovicjulijana hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT gorindmitrya hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT evlashinstanislava hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT salimonalexeyi hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT senatovfedors hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing
AT korsunskyalexanderm hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing