Cargando…
Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing
The study reveals the polymer–crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core–shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol wit...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094162/ https://www.ncbi.nlm.nih.gov/pubmed/37047227 http://dx.doi.org/10.3390/ijms24076255 |
_version_ | 1785023772714074112 |
---|---|
author | Kan, Yuliya Bondareva, Julia V. Statnik, Eugene S. Koudan, Elizaveta V. Ippolitov, Evgeniy V. Podporin, Mikhail S. Kovaleva, Polina A. Kapaev, Roman R. Gordeeva, Alexandra M. Cvjetinovic, Julijana Gorin, Dmitry A. Evlashin, Stanislav A. Salimon, Alexey I. Senatov, Fedor S. Korsunsky, Alexander M. |
author_facet | Kan, Yuliya Bondareva, Julia V. Statnik, Eugene S. Koudan, Elizaveta V. Ippolitov, Evgeniy V. Podporin, Mikhail S. Kovaleva, Polina A. Kapaev, Roman R. Gordeeva, Alexandra M. Cvjetinovic, Julijana Gorin, Dmitry A. Evlashin, Stanislav A. Salimon, Alexey I. Senatov, Fedor S. Korsunsky, Alexander M. |
author_sort | Kan, Yuliya |
collection | PubMed |
description | The study reveals the polymer–crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core–shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol with amorphous silica (PVA-PEG-SiO(2)), and a shell originating from polyvinyl alcohol and graphene oxide (PVA-GO). Crosslinking with GO and SiO(2) initiates the hydrogel transition for the fiber composite upon contact with moisture, which aims to optimize the drug release. The effect of hydrogel-inducing additives on the drug kinetics is evaluated in the case of chlorhexidine digluconate (CHX) encapsulation in the core of core–shell fiber composite PVA-PEG-SiO(2)-1x-CHX@PVA-GO. The release rate is assessed with the zero, first-order, Higuchi, and Korsmeyer–Peppas kinetic models, where the inclusion of crosslinking silica provides a longer degradation and release rate. CHX medicated core–shell composite provides sustainable antibacterial activity against Staphylococcus aureus. |
format | Online Article Text |
id | pubmed-10094162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100941622023-04-13 Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing Kan, Yuliya Bondareva, Julia V. Statnik, Eugene S. Koudan, Elizaveta V. Ippolitov, Evgeniy V. Podporin, Mikhail S. Kovaleva, Polina A. Kapaev, Roman R. Gordeeva, Alexandra M. Cvjetinovic, Julijana Gorin, Dmitry A. Evlashin, Stanislav A. Salimon, Alexey I. Senatov, Fedor S. Korsunsky, Alexander M. Int J Mol Sci Article The study reveals the polymer–crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core–shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol with amorphous silica (PVA-PEG-SiO(2)), and a shell originating from polyvinyl alcohol and graphene oxide (PVA-GO). Crosslinking with GO and SiO(2) initiates the hydrogel transition for the fiber composite upon contact with moisture, which aims to optimize the drug release. The effect of hydrogel-inducing additives on the drug kinetics is evaluated in the case of chlorhexidine digluconate (CHX) encapsulation in the core of core–shell fiber composite PVA-PEG-SiO(2)-1x-CHX@PVA-GO. The release rate is assessed with the zero, first-order, Higuchi, and Korsmeyer–Peppas kinetic models, where the inclusion of crosslinking silica provides a longer degradation and release rate. CHX medicated core–shell composite provides sustainable antibacterial activity against Staphylococcus aureus. MDPI 2023-03-26 /pmc/articles/PMC10094162/ /pubmed/37047227 http://dx.doi.org/10.3390/ijms24076255 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kan, Yuliya Bondareva, Julia V. Statnik, Eugene S. Koudan, Elizaveta V. Ippolitov, Evgeniy V. Podporin, Mikhail S. Kovaleva, Polina A. Kapaev, Roman R. Gordeeva, Alexandra M. Cvjetinovic, Julijana Gorin, Dmitry A. Evlashin, Stanislav A. Salimon, Alexey I. Senatov, Fedor S. Korsunsky, Alexander M. Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing |
title | Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing |
title_full | Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing |
title_fullStr | Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing |
title_full_unstemmed | Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing |
title_short | Hydrogel-Inducing Graphene-Oxide-Derived Core–Shell Fiber Composite for Antibacterial Wound Dressing |
title_sort | hydrogel-inducing graphene-oxide-derived core–shell fiber composite for antibacterial wound dressing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094162/ https://www.ncbi.nlm.nih.gov/pubmed/37047227 http://dx.doi.org/10.3390/ijms24076255 |
work_keys_str_mv | AT kanyuliya hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT bondarevajuliav hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT statnikeugenes hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT koudanelizavetav hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT ippolitovevgeniyv hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT podporinmikhails hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT kovalevapolinaa hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT kapaevromanr hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT gordeevaalexandram hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT cvjetinovicjulijana hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT gorindmitrya hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT evlashinstanislava hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT salimonalexeyi hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT senatovfedors hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing AT korsunskyalexanderm hydrogelinducinggrapheneoxidederivedcoreshellfibercompositeforantibacterialwounddressing |