Cargando…
Fine-Grained Motion Recognition in At-Home Fitness Monitoring with Smartwatch: A Comparative Analysis of Explainable Deep Neural Networks
The squat is a multi-joint exercise widely used for everyday at-home fitness. Focusing on the fine-grained classification of squat motions, we propose a smartwatch-based wearable system that can recognize subtle motion differences. For data collection, 52 participants were asked to perform one corre...
Autores principales: | Yun, Seok-Ho, Kim, Hyeon-Joo, Ryu, Jeh-Kwang, Kim, Seung-Chan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094383/ https://www.ncbi.nlm.nih.gov/pubmed/37046868 http://dx.doi.org/10.3390/healthcare11070940 |
Ejemplares similares
-
Recognition of Fine-Grained Walking Patterns Using a Smartwatch with Deep Attentive Neural Networks
por: Kim, Hyejoo, et al.
Publicado: (2021) -
Estimation of Fine-Grained Foot Strike Patterns with Wearable Smartwatch Devices
por: Joo, Hyeyeoun, et al.
Publicado: (2022) -
Recognition of Gait Patterns in Older Adults Using Wearable Smartwatch Devices: Observational Study
por: Kim, Hyeon-Joo, et al.
Publicado: (2022) -
Detection of Motion on a Trampoline with a Smartwatch
por: Kobayashi, Satoshi, et al.
Publicado: (2021) -
A “one-size-fits-most” walking recognition method for smartphones, smartwatches, and wearable accelerometers
por: Straczkiewicz, Marcin, et al.
Publicado: (2023)