Cargando…
Current Bioinformatics Tools to Optimize CRISPR/Cas9 Experiments to Reduce Off-Target Effects
The CRISPR-Cas system has evolved into a cutting-edge technology that has transformed the field of biological sciences through precise genetic manipulation. CRISPR/Cas9 nuclease is evolving into a revolutionizing method to edit any gene of any species with desirable outcomes. The swift advancement o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094584/ https://www.ncbi.nlm.nih.gov/pubmed/37047235 http://dx.doi.org/10.3390/ijms24076261 |
Sumario: | The CRISPR-Cas system has evolved into a cutting-edge technology that has transformed the field of biological sciences through precise genetic manipulation. CRISPR/Cas9 nuclease is evolving into a revolutionizing method to edit any gene of any species with desirable outcomes. The swift advancement of CRISPR-Cas technology is reflected in an ever-expanding ecosystem of bioinformatics tools designed to make CRISPR/Cas9 experiments easier. To assist researchers with efficient guide RNA designs with fewer off-target effects, nuclease target site selection, and experimental validation, bioinformaticians have built and developed a comprehensive set of tools. In this article, we will review the various computational tools available for the assessment of off-target effects, as well as the quantification of nuclease activity and specificity, including web-based search tools and experimental methods, and we will describe how these tools can be optimized for gene knock-out (KO) and gene knock-in (KI) for model organisms. We also discuss future directions in precision genome editing and its applications, as well as challenges in target selection, particularly in predicting off-target effects. |
---|