Cargando…

Evodiamine Exhibits Anti-Bladder Cancer Activity by Suppression of Glutathione Peroxidase 4 and Induction of Ferroptosis

Evodiamine (EVO) exhibits anti-cancer activity through the inhibition of cell proliferation; however, little is known about its underlying mechanism. To determine whether ferroptosis is involved in the therapeutic effects of EVO, we investigated critical factors, such as lipid peroxidation levels an...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Che-Yuan, Wu, Hung-Tsung, Shan, Yan-Shen, Wang, Chung-Teng, Shieh, Gia-Shing, Wu, Chao-Liang, Ou, Horng-Yih
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094601/
https://www.ncbi.nlm.nih.gov/pubmed/37046995
http://dx.doi.org/10.3390/ijms24076021
_version_ 1785023880664973312
author Hu, Che-Yuan
Wu, Hung-Tsung
Shan, Yan-Shen
Wang, Chung-Teng
Shieh, Gia-Shing
Wu, Chao-Liang
Ou, Horng-Yih
author_facet Hu, Che-Yuan
Wu, Hung-Tsung
Shan, Yan-Shen
Wang, Chung-Teng
Shieh, Gia-Shing
Wu, Chao-Liang
Ou, Horng-Yih
author_sort Hu, Che-Yuan
collection PubMed
description Evodiamine (EVO) exhibits anti-cancer activity through the inhibition of cell proliferation; however, little is known about its underlying mechanism. To determine whether ferroptosis is involved in the therapeutic effects of EVO, we investigated critical factors, such as lipid peroxidation levels and glutathione peroxidase 4 (GPX4) expression, under EVO treatment. Our results showed that EVO inhibited the cell proliferation of poorly differentiated, high-grade bladder cancer TCCSUP cells in a dose- and time-dependent manner. Lipid peroxides were detected by fluorescence microscopy after cancer cell exposure to EVO. GPX4, which catalyzes the conversion of lipid peroxides to prevent cells from undergoing ferroptosis, was decreased dose-dependently by EVO treatment. Given the features of iron dependency and lipid-peroxidation-driven death in ferroptosis, the iron chelator deferoxamine (DFO) was used to suppress EVO-induced ferroptosis. The lipid peroxide level significantly decreased when cells were treated with DFO prior to EVO treatment. DFO also attenuated EVO-induced cell death. Co-treatment with a pan-caspase inhibitor or necroptosis inhibitor with EVO did not alleviate cancer cell death. These results indicate that EVO induces ferroptosis rather than apoptosis or necroptosis. Furthermore, EVO suppressed the migratory ability, decreased the expression of mesenchymal markers, and increased epithelial marker expression, determined by a transwell migration assay and Western blotting. The TCCSUP bladder tumor xenograft tumor model confirmed the effects of EVO on the inhibition of tumor growth and EMT. In conclusion, EVO is a novel inducer for activating the ferroptosis of bladder cancer cells and may be a potential therapeutic agent for bladder cancer.
format Online
Article
Text
id pubmed-10094601
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-100946012023-04-13 Evodiamine Exhibits Anti-Bladder Cancer Activity by Suppression of Glutathione Peroxidase 4 and Induction of Ferroptosis Hu, Che-Yuan Wu, Hung-Tsung Shan, Yan-Shen Wang, Chung-Teng Shieh, Gia-Shing Wu, Chao-Liang Ou, Horng-Yih Int J Mol Sci Article Evodiamine (EVO) exhibits anti-cancer activity through the inhibition of cell proliferation; however, little is known about its underlying mechanism. To determine whether ferroptosis is involved in the therapeutic effects of EVO, we investigated critical factors, such as lipid peroxidation levels and glutathione peroxidase 4 (GPX4) expression, under EVO treatment. Our results showed that EVO inhibited the cell proliferation of poorly differentiated, high-grade bladder cancer TCCSUP cells in a dose- and time-dependent manner. Lipid peroxides were detected by fluorescence microscopy after cancer cell exposure to EVO. GPX4, which catalyzes the conversion of lipid peroxides to prevent cells from undergoing ferroptosis, was decreased dose-dependently by EVO treatment. Given the features of iron dependency and lipid-peroxidation-driven death in ferroptosis, the iron chelator deferoxamine (DFO) was used to suppress EVO-induced ferroptosis. The lipid peroxide level significantly decreased when cells were treated with DFO prior to EVO treatment. DFO also attenuated EVO-induced cell death. Co-treatment with a pan-caspase inhibitor or necroptosis inhibitor with EVO did not alleviate cancer cell death. These results indicate that EVO induces ferroptosis rather than apoptosis or necroptosis. Furthermore, EVO suppressed the migratory ability, decreased the expression of mesenchymal markers, and increased epithelial marker expression, determined by a transwell migration assay and Western blotting. The TCCSUP bladder tumor xenograft tumor model confirmed the effects of EVO on the inhibition of tumor growth and EMT. In conclusion, EVO is a novel inducer for activating the ferroptosis of bladder cancer cells and may be a potential therapeutic agent for bladder cancer. MDPI 2023-03-23 /pmc/articles/PMC10094601/ /pubmed/37046995 http://dx.doi.org/10.3390/ijms24076021 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Hu, Che-Yuan
Wu, Hung-Tsung
Shan, Yan-Shen
Wang, Chung-Teng
Shieh, Gia-Shing
Wu, Chao-Liang
Ou, Horng-Yih
Evodiamine Exhibits Anti-Bladder Cancer Activity by Suppression of Glutathione Peroxidase 4 and Induction of Ferroptosis
title Evodiamine Exhibits Anti-Bladder Cancer Activity by Suppression of Glutathione Peroxidase 4 and Induction of Ferroptosis
title_full Evodiamine Exhibits Anti-Bladder Cancer Activity by Suppression of Glutathione Peroxidase 4 and Induction of Ferroptosis
title_fullStr Evodiamine Exhibits Anti-Bladder Cancer Activity by Suppression of Glutathione Peroxidase 4 and Induction of Ferroptosis
title_full_unstemmed Evodiamine Exhibits Anti-Bladder Cancer Activity by Suppression of Glutathione Peroxidase 4 and Induction of Ferroptosis
title_short Evodiamine Exhibits Anti-Bladder Cancer Activity by Suppression of Glutathione Peroxidase 4 and Induction of Ferroptosis
title_sort evodiamine exhibits anti-bladder cancer activity by suppression of glutathione peroxidase 4 and induction of ferroptosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094601/
https://www.ncbi.nlm.nih.gov/pubmed/37046995
http://dx.doi.org/10.3390/ijms24076021
work_keys_str_mv AT hucheyuan evodiamineexhibitsantibladdercanceractivitybysuppressionofglutathioneperoxidase4andinductionofferroptosis
AT wuhungtsung evodiamineexhibitsantibladdercanceractivitybysuppressionofglutathioneperoxidase4andinductionofferroptosis
AT shanyanshen evodiamineexhibitsantibladdercanceractivitybysuppressionofglutathioneperoxidase4andinductionofferroptosis
AT wangchungteng evodiamineexhibitsantibladdercanceractivitybysuppressionofglutathioneperoxidase4andinductionofferroptosis
AT shiehgiashing evodiamineexhibitsantibladdercanceractivitybysuppressionofglutathioneperoxidase4andinductionofferroptosis
AT wuchaoliang evodiamineexhibitsantibladdercanceractivitybysuppressionofglutathioneperoxidase4andinductionofferroptosis
AT ouhorngyih evodiamineexhibitsantibladdercanceractivitybysuppressionofglutathioneperoxidase4andinductionofferroptosis