Cargando…
A Machine Learning Method to Identify Umami Peptide Sequences by Using Multiplicative LSTM Embedded Features
Umami peptides enhance the umami taste of food and have good food processing properties, nutritional value, and numerous potential applications. Wet testing for the identification of umami peptides is a time-consuming and expensive process. Here, we report the iUmami-DRLF that uses a logistic regres...
Autores principales: | Jiang, Jici, Li, Jiayu, Li, Junxian, Pei, Hongdi, Li, Mingxin, Zou, Quan, Lv, Zhibin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094688/ https://www.ncbi.nlm.nih.gov/pubmed/37048319 http://dx.doi.org/10.3390/foods12071498 |
Ejemplares similares
-
IUP-BERT: Identification of Umami Peptides Based on BERT Features
por: Jiang, Liangzhen, et al.
Publicado: (2022) -
Review of T cell proliferation regulatory factors in treatment and prognostic prediction for solid tumors
por: Li, Jiayu, et al.
Publicado: (2023) -
Identify Bitter Peptides by Using Deep Representation Learning Features
por: Jiang, Jici, et al.
Publicado: (2022) -
Umami /
por: Jufresa, Laia, 1983-
Publicado: (2015) -
Editorial: Machine learning for biological sequence analysis
por: Lv, Zhibin, et al.
Publicado: (2023)