Cargando…

Exploring the Pathological Effect of Aβ42 Oligomers on Neural Networks in Primary Cortical Neuron Culture

Alzheimer’s disease (AD) is a multifactorial disorder that affects cognitive functioning, behavior, and neuronal properties. The neuronal dysfunction is primarily responsible for cognitive decline in AD patients, with many causal factors including plaque accumulation of Aβ42. Neural hyperactivity in...

Descripción completa

Detalles Bibliográficos
Autores principales: Ganbat, Dulguun, Jeon, Jae Kyong, Lee, Yunjong, Kim, Sang Seong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094920/
https://www.ncbi.nlm.nih.gov/pubmed/37047612
http://dx.doi.org/10.3390/ijms24076641
Descripción
Sumario:Alzheimer’s disease (AD) is a multifactorial disorder that affects cognitive functioning, behavior, and neuronal properties. The neuronal dysfunction is primarily responsible for cognitive decline in AD patients, with many causal factors including plaque accumulation of Aβ42. Neural hyperactivity induced by Aβ42 deposition causes abnormalities in neural networks, leading to alterations in synaptic activity and interneuron dysfunction. Even though neuroimaging techniques elucidated the underlying mechanism of neural connectivity, precise understanding at the cellular level is still elusive. Previous multielectrode array studies have examined the neuronal network modulation in in vitro cultures revealing the relevance of ion channels and the chemical modulators in the presence of Aβ42. In this study, we investigated neuronal connectivity and dynamic changes using a high-density multielectrode array, particularly looking at network-wide parameter changes over time. By comparing the neuronal network between normal and Aβ42treated neuronal cultures, it was possible to discover the direct pathological effect of the Aβ42 oligomer altering the network characteristics. The detrimental effects of the Aβ42 oligomer included not only a decline in spike activation but also a qualitative impairment in neural connectivity as well as a disorientation of dispersibility. As a result, this will improve our understanding of how neural networks are modified during AD progression.