Cargando…
Machine Learning for Onset Prediction of Patients with Intracerebral Hemorrhage
Objective: Intracerebral hemorrhage (ICH) has a high mortality and long-term morbidity and thus has a significant overall health–economic impact. Outcomes are especially poor if the exact onset is unknown, but reliable imaging-based methods for onset estimation have not been established. We hypothes...
Autores principales: | Rusche, Thilo, Wasserthal, Jakob, Breit, Hanns-Christian, Fischer, Urs, Guzman, Raphael, Fiehler, Jens, Psychogios, Marios-Nikos, Sporns, Peter B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10094957/ https://www.ncbi.nlm.nih.gov/pubmed/37048712 http://dx.doi.org/10.3390/jcm12072631 |
Ejemplares similares
-
Potential of Stroke Imaging Using a New Prototype of Low-Field MRI: A Prospective Direct 0.55 T/1.5 T Scanner Comparison
por: Rusche, Thilo, et al.
Publicado: (2022) -
Prospective Assessment of Cerebral Microbleeds with Low-Field Magnetic Resonance Imaging (0.55 Tesla MRI)
por: Rusche, Thilo, et al.
Publicado: (2023) -
Neuroimaging of Pediatric Intracerebral Hemorrhage
por: Sporns, Peter B., et al.
Publicado: (2020) -
Neuroimaging of Acute Intracerebral Hemorrhage
por: Sporns, Peter B., et al.
Publicado: (2021) -
Imaging-Based Outcome Prediction of Acute Intracerebral Hemorrhage
por: Nawabi, Jawed, et al.
Publicado: (2021)