Cargando…
Bridging Gaps in HDR Improvement: The Role of MAD2L2, SCAI, and SCR7
This study aimed to enhance homology-directed repair (HDR) efficiency in CRISPR/Cas-mediated genome editing by targeting three key factors regulating the balance between HDR and non-homologous end joining (NHEJ): MAD2L2, SCAI, and Ligase IV. In order to achieve this, a cellular model using mutated e...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095018/ https://www.ncbi.nlm.nih.gov/pubmed/37047677 http://dx.doi.org/10.3390/ijms24076704 |
Sumario: | This study aimed to enhance homology-directed repair (HDR) efficiency in CRISPR/Cas-mediated genome editing by targeting three key factors regulating the balance between HDR and non-homologous end joining (NHEJ): MAD2L2, SCAI, and Ligase IV. In order to achieve this, a cellular model using mutated eGFP was designed to monitor HDR events. Results showed that MAD2L2 knockdown and SCR7 treatment significantly improved HDR efficiency during Cas9-mediated HDR repair of the mutated eGFP gene in the HEK293T cell line. Fusion protein Cas9-SCAI did not improve HDR. This study is the first to demonstrate that MAD2L2 knockdown during CRISPR-mediated gene editing in HEK293T cells can increase precise correction by up to 10.2 times. The study also confirmed a moderate but consistent effect of SCR7, an inhibitor of Ligase IV, which increased HDR by 1.7 times. These findings provide valuable insights into improving HDR-based genome editing efficiency. |
---|