Cargando…
Application of an Interpretable Machine Learning for Estimating Severity of Graves’ Orbitopathy Based on Initial Finding
(1) Background: We constructed scores for moderate-to-severe and muscle-predominant types of Graves’ orbitopathy (GO) risk prediction based on initial ophthalmic findings. (2) Methods: 400 patients diagnosed with GO and followed up at both endocrinology and ophthalmology clinics with at least 6 mont...
Autores principales: | Lee, Seunghyun, Yu, Jaeyong, Kim, Yuri, Kim, Myungjin, Lew, Helen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095042/ https://www.ncbi.nlm.nih.gov/pubmed/37048722 http://dx.doi.org/10.3390/jcm12072640 |
Ejemplares similares
-
Machine learning-based prediction of diagnostic markers for Graves’ orbitopathy
por: Cai, Yunying, et al.
Publicado: (2023) -
Graves' Orbitopathy
por: Hiromatsu, Yuji, et al.
Publicado: (2015) -
Asymmetric Graves’ Orbitopathy
por: Panagiotou, Grigorios, et al.
Publicado: (2020) -
Atypical Asymmetric Presentation of Severe Graves’ Orbitopathy
por: Gupta, Priyanka, et al.
Publicado: (2023) -
Update on the surgical management of Graves’ orbitopathy
por: Baeg, Joonyoung, et al.
Publicado: (2023)