Cargando…

Multifaceted Roles of Aquaporins in the Pathogenesis of Alzheimer’s Disease

The central nervous system is highly dependent on water, and disturbances in water homeostasis can have a significant impact on its normal functions. The regulation of water balance is, at least in part, carried out via specialized water channels called aquaporins. In the central nervous system, two...

Descripción completa

Detalles Bibliográficos
Autor principal: Yamada, Kaoru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095057/
https://www.ncbi.nlm.nih.gov/pubmed/37047501
http://dx.doi.org/10.3390/ijms24076528
Descripción
Sumario:The central nervous system is highly dependent on water, and disturbances in water homeostasis can have a significant impact on its normal functions. The regulation of water balance is, at least in part, carried out via specialized water channels called aquaporins. In the central nervous system, two major aquaporins (AQPs), AQP1 and AQP4, and their potential involvements have been long implicated in the pathophysiology of many brain disorders such as brain edema and Neuromyelitis optica. In addition to these diseases, there is growing attention to the involvement of AQPs in the removal of waste products in Alzheimer’s disease (AD). This indicates that targeting fluid homeostasis is a novel and attractive approach for AD. This review article aims to summarize recent knowledge on the pathological implications of AQPs in AD, discussing unsolved questions and future prospects.