Cargando…
A Leucine-Rich Repeat Receptor-like Kinase TaBIR1 Contributes to Wheat Resistance against Puccinia striiformis f. sp. tritici
Plant cell surface-localized receptor-like kinases (RLKs) recognize invading pathogens and transduce the immune signals inside host cells, subsequently triggering immune responses to fight off pathogen invasion. Nonetheless, our understanding of the role of RLKs in wheat resistance to the biotrophic...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095076/ https://www.ncbi.nlm.nih.gov/pubmed/37047410 http://dx.doi.org/10.3390/ijms24076438 |
Sumario: | Plant cell surface-localized receptor-like kinases (RLKs) recognize invading pathogens and transduce the immune signals inside host cells, subsequently triggering immune responses to fight off pathogen invasion. Nonetheless, our understanding of the role of RLKs in wheat resistance to the biotrophic fungus Puccinia striiformis f. sp. tritici (Pst) remains limited. During the differentially expressed genes in Pst infected wheat leaves, a Leucine-repeat receptor-like kinase (LRR-RLK) gene TaBIR1 was significantly upregulated in the incompatible wheat-Pst interaction. qRT-PCR verified that TaBIR1 is induced at the early infection stage of Pst. The transient expression of TaBIR1-GFP protein in N. bentamiana cells and wheat mesophyll protoplasts revealed its plasma membrane location. The knockdown of TaBIR1 expression by VIGS (virus induced gene silencing) declined wheat resistance to stripe rust, resulting in reduced reactive oxygen species (ROS) production, callose deposition, and transcripts of pathogenesis-related genes TaPR1 and TaPR2, along with increased Pst infection area. Ectopic overexpression of TaBIR1 in N. benthamiana triggered constitutive immune responses with significant cell death, callose accumulation, and ROS production. Moreover, TaBIR1 triggered immunity is dependent on NbBAK1, the silencing of which significantly attenuated the defense response triggered by TaBIR1. TaBIR1 interacted with the NbBAK1 homologues in wheat, co-receptor TaSERK2 and TaSERK5, the transient expression of which could restore the impaired defense due to NbBAK1 silencing. Taken together, TaBIR1 is a cell surface RLK that contributes to wheat stripe rust resistance, probably as a positive regulator of plant immunity in a BAK1-dependent manner. |
---|