Cargando…
Predicting Cardiac Arrest in Children with Heart Disease: A Novel Machine Learning Algorithm
Background: Children with congenital and acquired heart disease are at a higher risk of cardiac arrest compared to those without heart disease. Although the monitoring of cardiopulmonary resuscitation quality and extracorporeal resuscitation technologies have advanced, survival after cardiac arrest...
Autores principales: | Yu, Priscilla, Skinner, Michael, Esangbedo, Ivie, Lasa, Javier J., Li, Xilong, Natarajan, Sriraam, Raman, Lakshmi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095110/ https://www.ncbi.nlm.nih.gov/pubmed/37048811 http://dx.doi.org/10.3390/jcm12072728 |
Ejemplares similares
-
Early Changes in Near-Infrared Spectroscopy Are Associated With Cardiac Arrest in Children With Congenital Heart Disease
por: Yu, Priscilla, et al.
Publicado: (2022) -
Chest Compressions in Pediatric Patients With Continuous-Flow Ventricular Assist Devices: Case Series and Proposed Algorithm
por: Esangbedo, Ivie D., et al.
Publicado: (2022) -
Machine learning algorithms for predicting days of high incidence for out-of-hospital cardiac arrest
por: Shimada-Sammori, Kaoru, et al.
Publicado: (2023) -
Human-Guided Learning for Probabilistic Logic Models
por: Odom, Phillip, et al.
Publicado: (2018) -
Causal Learning From Predictive Modeling for Observational Data
por: Ramanan, Nandini, et al.
Publicado: (2020)