Cargando…

Haematological Trends and Transfusion during Adult Extracorporeal Membrane Oxygenation: A Single Centre Study

The temporal trends in haematological parameters and their associations with blood product transfusion requirements in patients supported with extracorporeal membrane oxygenation (ECMO) are poorly understood. We performed a retrospective data analysis to better understand the behaviour of haematolog...

Descripción completa

Detalles Bibliográficos
Autores principales: Worku, Elliott T., Win, April M., Parmar, Dinesh, Anstey, Chris, Shekar, Kiran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095131/
https://www.ncbi.nlm.nih.gov/pubmed/37048711
http://dx.doi.org/10.3390/jcm12072629
Descripción
Sumario:The temporal trends in haematological parameters and their associations with blood product transfusion requirements in patients supported with extracorporeal membrane oxygenation (ECMO) are poorly understood. We performed a retrospective data analysis to better understand the behaviour of haematological and coagulation parameters and their associations with transfusion requirements during ECMO. Methods: Patient demographics, haematological and coagulation parameters, plasma haemoglobin and fibrinogen concentrations, platelet count, the international normalised ratio (INR), the activated partial thromboplastin time (APTT), and blood product transfusion data from 138 patients who received ECMO in a single high-volume centre were analysed. Results: Ninety-two patients received venoarterial (VA) ECMO and 46 patients received venovenous (VV) ECMO. The median (IQR) duration of VA, and VV ECMO was 8 (5–13) days and 13 (8–23) days, respectively. There were significant reductions in haemoglobin, the platelet count, and the fibrinogen concentration upon initiation of ECMO. On average, over time, patients on VV ECMO had platelet counts 44 × 10(9)/L higher than those on VA ECMO (p ≤ 0.001). Fibrinogen and APTT did not vary significantly based on the mode of ECMO (p = 0.55 and p = 0.072, respectively). A platelet count < 50 × 10(9)/L or a fibrinogen level < 1.8 g/L was associated with 50% chance of PRBC transfusion, regardless of the ECMO type, and packed red blood cell (PRBC) transfusion was more common with VA ECMO. APTT was predictive of the transfusion requirement, and the decrement in APTT was discriminatory between VVECMO survivors and nonsurvivors. Conclusion: ECMO support is associated with reductions in haemoglobin, platelet count, and fibrinogen. Patients supported with VA ECMO are more likely to receive a PRBC transfusion compared to those on VV ECMO. Thrombocytopaenia, hypofibrinogenaemia, and anticoagulation effect the likelihood of requiring PRBC transfusion. Further research is needed to define optimal blood management during ECMO, including appropriate transfusion triggers and the anticoagulation intensity.