Cargando…
Improved U-net-based leukocyte segmentation method
SIGNIFICANCE: Leukocytes are mainly composed of neutrophils, basophils, eosinophils, monocytes, and lymphocytes. The number and proportion of different types of leukocytes correspond to different diseases, so an accurate segmentation of each type of leukocyte is important for the diagnosis of diseas...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095536/ https://www.ncbi.nlm.nih.gov/pubmed/37065646 http://dx.doi.org/10.1117/1.JBO.28.4.045002 |
_version_ | 1785024107348230144 |
---|---|
author | Zhu, Mengjing Chen, Wei Sun, Yi Li, Zhaohui |
author_facet | Zhu, Mengjing Chen, Wei Sun, Yi Li, Zhaohui |
author_sort | Zhu, Mengjing |
collection | PubMed |
description | SIGNIFICANCE: Leukocytes are mainly composed of neutrophils, basophils, eosinophils, monocytes, and lymphocytes. The number and proportion of different types of leukocytes correspond to different diseases, so an accurate segmentation of each type of leukocyte is important for the diagnosis of disease. However, the acquisition of blood cell images can be affected by external environmental factors, which can lead to variable light and darkness, complex backgrounds, and poorly characterized leukocytes. AIM: To address the problem of complex blood cell images collected under different environments and the lack of obvious leukocyte features, a leukocyte segmentation method based on improved U-net is proposed. APPROACH: First, adaptive histogram equalization-retinex correction was introduced for data enhancement to make the leukocyte features in the blood cell images clearer. Then, to address the problem of similarity between different types of leukocytes, convolutional block attention module is added to the four skip connections of U-net to focus the features from spatial and channel aspects, so that the network can quickly locate the high-value information of features in different channels and spaces. It avoids the problem of large amount of repeated computation of low-value information, prevents overfitting, and improves the training efficiency and generalization ability of the network. Finally, to solve the problem of class imbalance in blood cell images and to better segment the cytoplasm of leukocytes, a loss function combining focal loss and Dice loss is proposed. RESULTS: We use the BCISC public dataset to verify the effectiveness of the proposed method. The segmentation of multiple leukocytes using the method of this paper can achieve 99.53% accuracy and 91.89% mIoU. CONCLUSIONS: The experimental results show that the method achieves good segmentation results for lymphocytes, basophils, neutrophils, eosinophils, and monocytes. |
format | Online Article Text |
id | pubmed-10095536 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Society of Photo-Optical Instrumentation Engineers |
record_format | MEDLINE/PubMed |
spelling | pubmed-100955362023-04-13 Improved U-net-based leukocyte segmentation method Zhu, Mengjing Chen, Wei Sun, Yi Li, Zhaohui J Biomed Opt General SIGNIFICANCE: Leukocytes are mainly composed of neutrophils, basophils, eosinophils, monocytes, and lymphocytes. The number and proportion of different types of leukocytes correspond to different diseases, so an accurate segmentation of each type of leukocyte is important for the diagnosis of disease. However, the acquisition of blood cell images can be affected by external environmental factors, which can lead to variable light and darkness, complex backgrounds, and poorly characterized leukocytes. AIM: To address the problem of complex blood cell images collected under different environments and the lack of obvious leukocyte features, a leukocyte segmentation method based on improved U-net is proposed. APPROACH: First, adaptive histogram equalization-retinex correction was introduced for data enhancement to make the leukocyte features in the blood cell images clearer. Then, to address the problem of similarity between different types of leukocytes, convolutional block attention module is added to the four skip connections of U-net to focus the features from spatial and channel aspects, so that the network can quickly locate the high-value information of features in different channels and spaces. It avoids the problem of large amount of repeated computation of low-value information, prevents overfitting, and improves the training efficiency and generalization ability of the network. Finally, to solve the problem of class imbalance in blood cell images and to better segment the cytoplasm of leukocytes, a loss function combining focal loss and Dice loss is proposed. RESULTS: We use the BCISC public dataset to verify the effectiveness of the proposed method. The segmentation of multiple leukocytes using the method of this paper can achieve 99.53% accuracy and 91.89% mIoU. CONCLUSIONS: The experimental results show that the method achieves good segmentation results for lymphocytes, basophils, neutrophils, eosinophils, and monocytes. Society of Photo-Optical Instrumentation Engineers 2023-04-12 2023-04 /pmc/articles/PMC10095536/ /pubmed/37065646 http://dx.doi.org/10.1117/1.JBO.28.4.045002 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. |
spellingShingle | General Zhu, Mengjing Chen, Wei Sun, Yi Li, Zhaohui Improved U-net-based leukocyte segmentation method |
title | Improved U-net-based leukocyte segmentation method |
title_full | Improved U-net-based leukocyte segmentation method |
title_fullStr | Improved U-net-based leukocyte segmentation method |
title_full_unstemmed | Improved U-net-based leukocyte segmentation method |
title_short | Improved U-net-based leukocyte segmentation method |
title_sort | improved u-net-based leukocyte segmentation method |
topic | General |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095536/ https://www.ncbi.nlm.nih.gov/pubmed/37065646 http://dx.doi.org/10.1117/1.JBO.28.4.045002 |
work_keys_str_mv | AT zhumengjing improvedunetbasedleukocytesegmentationmethod AT chenwei improvedunetbasedleukocytesegmentationmethod AT sunyi improvedunetbasedleukocytesegmentationmethod AT lizhaohui improvedunetbasedleukocytesegmentationmethod |