Cargando…
Analyses of the Cellular Interactions between the Ossification of Collagen-Based Barrier Membranes and the Underlying Bone Defects
Barrier membranes are an essential tool in guided bone Regeneration (GBR), which have been widely presumed to have a bioactive effect that is beyond their occluding and space maintenance functionalities. A standardized calvaria implantation model was applied for 2, 8, and 16 weeks on Wistar rats to...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095555/ https://www.ncbi.nlm.nih.gov/pubmed/37047808 http://dx.doi.org/10.3390/ijms24076833 |
_version_ | 1785024111609643008 |
---|---|
author | Alkildani, Said Ren, Yanru Liu, Luo Rimashevskiy, Denis Schnettler, Reinhard Radenković, Milena Najman, Stevo Stojanović, Sanja Jung, Ole Barbeck, Mike |
author_facet | Alkildani, Said Ren, Yanru Liu, Luo Rimashevskiy, Denis Schnettler, Reinhard Radenković, Milena Najman, Stevo Stojanović, Sanja Jung, Ole Barbeck, Mike |
author_sort | Alkildani, Said |
collection | PubMed |
description | Barrier membranes are an essential tool in guided bone Regeneration (GBR), which have been widely presumed to have a bioactive effect that is beyond their occluding and space maintenance functionalities. A standardized calvaria implantation model was applied for 2, 8, and 16 weeks on Wistar rats to test the interactions between the barrier membrane and the underlying bone defects which were filled with bovine bone substitute materials (BSM). In an effort to understand the barrier membrane’s bioactivity, deeper histochemical analyses, as well as the immunohistochemical detection of macrophage subtypes (M1/M2) and vascular endothelial cells, were conducted and combined with histomorphometric and statistical approaches. The native collagen-based membrane was found to have ossified due to its potentially osteoconductive and osteogenic properties, forming a “bony shield” overlying the bone defects. Histomorphometrical evaluation revealed the resorption of the membranes and their substitution with bone matrix. The numbers of both M1- and M2-macrophages were significantly higher within the membrane compartments compared to the underlying bone defects. Thereby, M2-macrophages significantly dominated the tissue reaction within the membrane compartments. Statistically, a correlation between M2-macropahges and bone regeneration was only found at 2 weeks post implantationem, while the pro-inflammatory limb of the immune response correlated with the two processes at 8 weeks. Altogether, this study elaborates on the increasingly described correlations between barrier membranes and the underlying bone regeneration, which sheds a light on the understanding of the immunomodulatory features of biomaterials. |
format | Online Article Text |
id | pubmed-10095555 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100955552023-04-13 Analyses of the Cellular Interactions between the Ossification of Collagen-Based Barrier Membranes and the Underlying Bone Defects Alkildani, Said Ren, Yanru Liu, Luo Rimashevskiy, Denis Schnettler, Reinhard Radenković, Milena Najman, Stevo Stojanović, Sanja Jung, Ole Barbeck, Mike Int J Mol Sci Article Barrier membranes are an essential tool in guided bone Regeneration (GBR), which have been widely presumed to have a bioactive effect that is beyond their occluding and space maintenance functionalities. A standardized calvaria implantation model was applied for 2, 8, and 16 weeks on Wistar rats to test the interactions between the barrier membrane and the underlying bone defects which were filled with bovine bone substitute materials (BSM). In an effort to understand the barrier membrane’s bioactivity, deeper histochemical analyses, as well as the immunohistochemical detection of macrophage subtypes (M1/M2) and vascular endothelial cells, were conducted and combined with histomorphometric and statistical approaches. The native collagen-based membrane was found to have ossified due to its potentially osteoconductive and osteogenic properties, forming a “bony shield” overlying the bone defects. Histomorphometrical evaluation revealed the resorption of the membranes and their substitution with bone matrix. The numbers of both M1- and M2-macrophages were significantly higher within the membrane compartments compared to the underlying bone defects. Thereby, M2-macrophages significantly dominated the tissue reaction within the membrane compartments. Statistically, a correlation between M2-macropahges and bone regeneration was only found at 2 weeks post implantationem, while the pro-inflammatory limb of the immune response correlated with the two processes at 8 weeks. Altogether, this study elaborates on the increasingly described correlations between barrier membranes and the underlying bone regeneration, which sheds a light on the understanding of the immunomodulatory features of biomaterials. MDPI 2023-04-06 /pmc/articles/PMC10095555/ /pubmed/37047808 http://dx.doi.org/10.3390/ijms24076833 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alkildani, Said Ren, Yanru Liu, Luo Rimashevskiy, Denis Schnettler, Reinhard Radenković, Milena Najman, Stevo Stojanović, Sanja Jung, Ole Barbeck, Mike Analyses of the Cellular Interactions between the Ossification of Collagen-Based Barrier Membranes and the Underlying Bone Defects |
title | Analyses of the Cellular Interactions between the Ossification of Collagen-Based Barrier Membranes and the Underlying Bone Defects |
title_full | Analyses of the Cellular Interactions between the Ossification of Collagen-Based Barrier Membranes and the Underlying Bone Defects |
title_fullStr | Analyses of the Cellular Interactions between the Ossification of Collagen-Based Barrier Membranes and the Underlying Bone Defects |
title_full_unstemmed | Analyses of the Cellular Interactions between the Ossification of Collagen-Based Barrier Membranes and the Underlying Bone Defects |
title_short | Analyses of the Cellular Interactions between the Ossification of Collagen-Based Barrier Membranes and the Underlying Bone Defects |
title_sort | analyses of the cellular interactions between the ossification of collagen-based barrier membranes and the underlying bone defects |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095555/ https://www.ncbi.nlm.nih.gov/pubmed/37047808 http://dx.doi.org/10.3390/ijms24076833 |
work_keys_str_mv | AT alkildanisaid analysesofthecellularinteractionsbetweentheossificationofcollagenbasedbarriermembranesandtheunderlyingbonedefects AT renyanru analysesofthecellularinteractionsbetweentheossificationofcollagenbasedbarriermembranesandtheunderlyingbonedefects AT liuluo analysesofthecellularinteractionsbetweentheossificationofcollagenbasedbarriermembranesandtheunderlyingbonedefects AT rimashevskiydenis analysesofthecellularinteractionsbetweentheossificationofcollagenbasedbarriermembranesandtheunderlyingbonedefects AT schnettlerreinhard analysesofthecellularinteractionsbetweentheossificationofcollagenbasedbarriermembranesandtheunderlyingbonedefects AT radenkovicmilena analysesofthecellularinteractionsbetweentheossificationofcollagenbasedbarriermembranesandtheunderlyingbonedefects AT najmanstevo analysesofthecellularinteractionsbetweentheossificationofcollagenbasedbarriermembranesandtheunderlyingbonedefects AT stojanovicsanja analysesofthecellularinteractionsbetweentheossificationofcollagenbasedbarriermembranesandtheunderlyingbonedefects AT jungole analysesofthecellularinteractionsbetweentheossificationofcollagenbasedbarriermembranesandtheunderlyingbonedefects AT barbeckmike analysesofthecellularinteractionsbetweentheossificationofcollagenbasedbarriermembranesandtheunderlyingbonedefects |