Cargando…
Accelerating Density Functional Calculation of Adatom Adsorption on Graphene via Machine Learning
Graphene has attracted significant interest due to its unique properties. Herein, we built an adsorption structure selection workflow based on a density functional theory (DFT) calculation and machine learning to provide a guide for the interfacial properties of graphene. There are two main parts in...
Autores principales: | Qu, Nan, Chen, Mo, Liao, Mingqing, Cheng, Yuan, Lai, Zhonghong, Zhou, Fei, Zhu, Jingchuan, Liu, Yong, Zhang, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095669/ https://www.ncbi.nlm.nih.gov/pubmed/37048928 http://dx.doi.org/10.3390/ma16072633 |
Ejemplares similares
-
Exploration of Solid Solutions and the Strengthening of Aluminum Substrates by Alloying Atoms: Machine Learning Accelerated Density Functional Theory Calculations
por: Huang, Jingtao, et al.
Publicado: (2023) -
Accelerating First Principles Calculation of Multi-Component Alloy Steady-State Structure and Elastic Properties in Full Component Space
por: Yao, Zhixuan, et al.
Publicado: (2023) -
Role of Adatoms for the Adsorption of F4TCNQ on Au(111)
por: Berger, Richard K., et al.
Publicado: (2022) -
Hg adatoms on graphene: A first-principles study
por: Fenta, A S, et al.
Publicado: (2020) -
Patterns of Reacted
Adatoms in Adsorption of Acetonitrile
on Si{111}-(7 × 7)
por: Mizutani, Hironori, et al.
Publicado: (2023)