Cargando…

Application of Atmospheric-Pressure Jet Plasma in the Presence of Acrylic Acid for Joining Polymers without Adhesives

This study investigates the treatment of surfaces with jet plasma at atmospheric pressure in the presence of acrylic acid as a resource-saving and efficient approach to joining polymers on polystyrene (PS) and polyamide 12 (PA 12) surfaces. Acrylic acid was added in order to introduce functional gro...

Descripción completa

Detalles Bibliográficos
Autores principales: Günther, Roman, Caseri, Walter, Brändli, Christof
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095700/
https://www.ncbi.nlm.nih.gov/pubmed/37048967
http://dx.doi.org/10.3390/ma16072673
Descripción
Sumario:This study investigates the treatment of surfaces with jet plasma at atmospheric pressure in the presence of acrylic acid as a resource-saving and efficient approach to joining polymers on polystyrene (PS) and polyamide 12 (PA 12) surfaces. Acrylic acid was added in order to introduce functional groups to the polymer surfaces. XPS analysis revealed a high density of oxygen-containing groups, e.g., carboxylic acid groups, on the polymer surfaces, the detailed composition depending on the polymer. The AFM measurements indicated that the modification of polyamide resulted in morphological changes and an increase in surface roughness due to polymer recrystallization. When the surface-modified polymers were brought in contact under a load, significant adhesion between the polymer surfaces was measured. In particular, PS and PA 12, which are otherwise difficult to join by gluing, could readily be connected in this way. The joint polymers could be separated intentionally by immersion in water, thus enabling the recycling of the materials. The resistance of the joint to water depends on the polymer system, with polyamide providing strikingly higher resistance than polystyrene. Accordingly, treating the joint polymers with water allows debonding on demand, particularly when PS is involved. Exposure of modified polymer surfaces to solutions of metal ions increased the resistance of joint polymers to water.