Cargando…
CRISPR-finder: A high throughput and cost-effective method to identify successfully edited Arabidopsis thaliana individuals
Genome editing with the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR associated protein) system allows mutagenesis of a targeted region of the genome using a Cas endonuclease and an artificial guide RNA. Both because of variable efficiency with which such mutations ar...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095899/ https://www.ncbi.nlm.nih.gov/pubmed/37077216 http://dx.doi.org/10.1017/qpb.2020.6 |
Sumario: | Genome editing with the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR associated protein) system allows mutagenesis of a targeted region of the genome using a Cas endonuclease and an artificial guide RNA. Both because of variable efficiency with which such mutations arise and because the repair process produces a spectrum of mutations, one needs to ascertain the genome sequence at the targeted locus for many individuals that have been subjected to mutagenesis. We provide a complete protocol for the generation of amplicons up until the identification of the exact mutations in the targeted region. CRISPR-finder can be used to process thousands of individuals in a single sequencing run. We successfully identified an ISOCHORISMATE SYNTHASE 1 mutant line in which the production of salicylic acid was impaired compared to the wild type, as expected. These features establish CRISPR-finder as a high-throughput, cost-effective and efficient genotyping method of individuals whose genomes have been targeted using the CRISPR/Cas9 system. |
---|