Cargando…

leafkin—An R package for automated kinematic data analysis of monocot leaves

Growth is one of the most studied plant responses. At the cellular level, plant growth is driven by cell division and cell expansion. A means to quantify these two cellular processes is through kinematic analysis, a methodology that has been developed and perfected over the past decades, with in-dep...

Descripción completa

Detalles Bibliográficos
Autores principales: Bertels, Jonas, Beemster, Gerrit T.S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095969/
https://www.ncbi.nlm.nih.gov/pubmed/37077328
http://dx.doi.org/10.1017/qpb.2020.3
Descripción
Sumario:Growth is one of the most studied plant responses. At the cellular level, plant growth is driven by cell division and cell expansion. A means to quantify these two cellular processes is through kinematic analysis, a methodology that has been developed and perfected over the past decades, with in-depth descriptions of the methodology available. Unfortunately, after performing the lab work, researchers are required to perform time-consuming, repetitive and error-prone calculations. To lower the barrier towards this final step in the analysis and to aid researchers currently applying this technique, we have created leafkin, an R-package to perform all the calculations involved in the kinematic analysis of monocot leaves using only four functions. These functions support leaf elongation rate calculations, fitting of cell length profiles, extraction of fitted cell lengths and execution of kinematic equations. With the leafkin package, kinematic analysis of monocot leaves becomes more accessible than before.