Cargando…

14-Substituted Diquinothiazines as a New Group of Anticancer Agents

A series of novel double-angularly condensed diquinothiazines with aminoalkyl, amidoalkyl, sulfonamidoalkyl, and substituted phenyl groups was designed, synthesized, and evaluated for their anticancer activity against four selected human tumor cell lines (HTC116, SH-SY5Y, A549, and H1299). The cytot...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeleń, Małgorzata, Pluta, Krystian, Szmielew, Małgorzata, Morak-Młodawska, Beata, Herman, Kinga, Giercuszkiewicz, Klaudia, Kasprzycka, Anna, Skonieczna, Magdalena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096123/
https://www.ncbi.nlm.nih.gov/pubmed/37050010
http://dx.doi.org/10.3390/molecules28073248
Descripción
Sumario:A series of novel double-angularly condensed diquinothiazines with aminoalkyl, amidoalkyl, sulfonamidoalkyl, and substituted phenyl groups was designed, synthesized, and evaluated for their anticancer activity against four selected human tumor cell lines (HTC116, SH-SY5Y, A549, and H1299). The cytotoxicity of the novel diquinothiazines was investigated against BEAS-2B cells. The activities of the compounds were compared to etoposide. Among them, compounds with aminoalkyl and phenyl groups showed excellent broad-spectrum anticancer activity. The most active 14-(methylthiophenyl)diquinothiazine, 3c, showed low cytotoxicity against BEAS-2B cells and high activity against tumor cell lines HTC116, SH-SY5Y, A549, and H1299, with IC(50) values of 2.3 µM, 2.7 µM, 17.2 µM, and 2.7 µM, respectively (etopiside 8.6 µM, 3.9 µM, 44.8 µM, and 0.6, respectively). Live long-term microscopic observations of cell survival using the starting molecule M0 were also performed. Flow cytometry showed the proapoptotic effects of the studied diquinothiazines. Inhibition of the cell cycle in the S phase was observed, which is associated with damage to nucleic acids and connected to DNA replication arrest.