Cargando…
Synthesis, Microstructure Investigation, Mechanical and Tribological Behaviour of the AA5083–WC Composite
In this study, AA5083–WC composites were developed by ball milling followed by hot consolidation. The microstructures of the developed composites were investigated using XRD, SEM, EDX, and EBSD. The developed composites exhibited a homogeneous dispersion of WC particulates in the AA5083 matrix witho...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096134/ https://www.ncbi.nlm.nih.gov/pubmed/37049185 http://dx.doi.org/10.3390/ma16072891 |
_version_ | 1785024251478147072 |
---|---|
author | Ammar, Hany R. Sivasankaran, Subbarayan Sherif, El-Sayed M. Almufadi, Fahad A. Mekky, Abdel-baset H. |
author_facet | Ammar, Hany R. Sivasankaran, Subbarayan Sherif, El-Sayed M. Almufadi, Fahad A. Mekky, Abdel-baset H. |
author_sort | Ammar, Hany R. |
collection | PubMed |
description | In this study, AA5083–WC composites were developed by ball milling followed by hot consolidation. The microstructures of the developed composites were investigated using XRD, SEM, EDX, and EBSD. The developed composites exhibited a homogeneous dispersion of WC particulates in the AA5083 matrix without any interactions at the matrix/reinforcement interface. The results confirmed the development of a refined equiaxed grain structure of AA5083–WC composites where the EBSD results revealed an average grain size of 4.38 µm and 3.32 µm for AA5083–6%WC (AW-6) and AA5083–12%WC (AW-12) composites, respectively. The results showed that incorporating WC particulates in the AA5083 alloy matrix significantly improved the compressive stress–strain behaviour and considerably enhanced the resistance to wear and friction. The AA5083–12%WC (AW-12) composite displayed the maximum strength and the highest resistance to wear and friction, whereas the as-milled AA5083 alloy (AW-0) exhibited the lowest strength and the least resistance to wear and friction. The AA5083–12%WC (AW-12) composite exhibited the optimum mechanical and tribological behaviour of the developed composites, making it a promising candidate for tribological applications. |
format | Online Article Text |
id | pubmed-10096134 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100961342023-04-13 Synthesis, Microstructure Investigation, Mechanical and Tribological Behaviour of the AA5083–WC Composite Ammar, Hany R. Sivasankaran, Subbarayan Sherif, El-Sayed M. Almufadi, Fahad A. Mekky, Abdel-baset H. Materials (Basel) Article In this study, AA5083–WC composites were developed by ball milling followed by hot consolidation. The microstructures of the developed composites were investigated using XRD, SEM, EDX, and EBSD. The developed composites exhibited a homogeneous dispersion of WC particulates in the AA5083 matrix without any interactions at the matrix/reinforcement interface. The results confirmed the development of a refined equiaxed grain structure of AA5083–WC composites where the EBSD results revealed an average grain size of 4.38 µm and 3.32 µm for AA5083–6%WC (AW-6) and AA5083–12%WC (AW-12) composites, respectively. The results showed that incorporating WC particulates in the AA5083 alloy matrix significantly improved the compressive stress–strain behaviour and considerably enhanced the resistance to wear and friction. The AA5083–12%WC (AW-12) composite displayed the maximum strength and the highest resistance to wear and friction, whereas the as-milled AA5083 alloy (AW-0) exhibited the lowest strength and the least resistance to wear and friction. The AA5083–12%WC (AW-12) composite exhibited the optimum mechanical and tribological behaviour of the developed composites, making it a promising candidate for tribological applications. MDPI 2023-04-05 /pmc/articles/PMC10096134/ /pubmed/37049185 http://dx.doi.org/10.3390/ma16072891 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ammar, Hany R. Sivasankaran, Subbarayan Sherif, El-Sayed M. Almufadi, Fahad A. Mekky, Abdel-baset H. Synthesis, Microstructure Investigation, Mechanical and Tribological Behaviour of the AA5083–WC Composite |
title | Synthesis, Microstructure Investigation, Mechanical and Tribological Behaviour of the AA5083–WC Composite |
title_full | Synthesis, Microstructure Investigation, Mechanical and Tribological Behaviour of the AA5083–WC Composite |
title_fullStr | Synthesis, Microstructure Investigation, Mechanical and Tribological Behaviour of the AA5083–WC Composite |
title_full_unstemmed | Synthesis, Microstructure Investigation, Mechanical and Tribological Behaviour of the AA5083–WC Composite |
title_short | Synthesis, Microstructure Investigation, Mechanical and Tribological Behaviour of the AA5083–WC Composite |
title_sort | synthesis, microstructure investigation, mechanical and tribological behaviour of the aa5083–wc composite |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096134/ https://www.ncbi.nlm.nih.gov/pubmed/37049185 http://dx.doi.org/10.3390/ma16072891 |
work_keys_str_mv | AT ammarhanyr synthesismicrostructureinvestigationmechanicalandtribologicalbehaviouroftheaa5083wccomposite AT sivasankaransubbarayan synthesismicrostructureinvestigationmechanicalandtribologicalbehaviouroftheaa5083wccomposite AT sherifelsayedm synthesismicrostructureinvestigationmechanicalandtribologicalbehaviouroftheaa5083wccomposite AT almufadifahada synthesismicrostructureinvestigationmechanicalandtribologicalbehaviouroftheaa5083wccomposite AT mekkyabdelbaseth synthesismicrostructureinvestigationmechanicalandtribologicalbehaviouroftheaa5083wccomposite |