Cargando…
BiComp-DTA: Drug-target binding affinity prediction through complementary biological-related and compression-based featurization approach
Drug-target binding affinity prediction plays a key role in the early stage of drug discovery. Numerous experimental and data-driven approaches have been developed for predicting drug-target binding affinity. However, experimental methods highly rely on the limited structural-related information fro...
Autores principales: | Kalemati, Mahmood, Zamani Emani, Mojtaba, Koohi, Somayyeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096306/ https://www.ncbi.nlm.nih.gov/pubmed/37000857 http://dx.doi.org/10.1371/journal.pcbi.1011036 |
Ejemplares similares
-
CapsNet-MHC predicts peptide-MHC class I binding based on capsule neural networks
por: Kalemati, Mahmood, et al.
Publicado: (2023) -
DeepDTA: deep drug–target binding affinity prediction
por: Öztürk, Hakime, et al.
Publicado: (2018) -
GANsDTA: Predicting Drug-Target Binding Affinity Using GANs
por: Zhao, Lingling, et al.
Publicado: (2020) -
DataDTA: a multi-feature and dual-interaction aggregation framework for drug–target binding affinity prediction
por: Zhu, Yan, et al.
Publicado: (2023) -
GraphscoreDTA: optimized graph neural network for protein–ligand binding affinity prediction
por: Wang, Kaili, et al.
Publicado: (2023)