Cargando…

Investigation on Preparation and Performance of High Ga CIGS Absorbers and Their Solar Cells

Tandem solar cells usually use a wide band gap absorber for top cell. The band gap of CuIn((1−x))Ga(x)Se(2) can be changed from 1.04 eV to 1.68 eV with the ratio of Ga/(In+Ga) from 0 to 1. When the ratio of Ga/(In+Ga) is over 0.7, the band gap of CIGS absorber is over 1.48 eV. CIGS absorber with a h...

Descripción completa

Detalles Bibliográficos
Autores principales: Lv, Xiaoyu, Zheng, Zilong, Zhao, Ming, Wang, Hanpeng, Zhuang, Daming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096457/
https://www.ncbi.nlm.nih.gov/pubmed/37049100
http://dx.doi.org/10.3390/ma16072806
Descripción
Sumario:Tandem solar cells usually use a wide band gap absorber for top cell. The band gap of CuIn((1−x))Ga(x)Se(2) can be changed from 1.04 eV to 1.68 eV with the ratio of Ga/(In+Ga) from 0 to 1. When the ratio of Ga/(In+Ga) is over 0.7, the band gap of CIGS absorber is over 1.48 eV. CIGS absorber with a high Ga content is a possible candidate one for the top cell. In this work, CuInGa precursors were prepared by magnetron sputtering with CuIn and CuGa targets, and CIGS absorbers were prepared by selenization annealing. The Ga/(In+Ga) is changed by changing the thickness of CuIn and CuGa layers. Additionally, CIGS solar cells were prepared using CdS buffer layer. The effects of Ga content on CIGS thin film and CIGS solar cell were studied. The band gap was measured by PL and EQE. The results show that using structure of CuIn/CuGa precursors can make the band gap of CIGS present a gradient band gap, which can obtain a high open circuit voltage and high short circuit current of the device. With the decrease in Ga content, the efficiency of the solar cell increases gradually. Additionally, the highest efficiency of the CIGS solar cells is 11.58% when the ratio of Ga/(In+Ga) is 0.72. The value of Voc is 702 mV. CIGS with high Ga content shows a great potential for the top cell of the tandem solar cell.