Cargando…

Deep convolution neural network for screening carotid calcification in dental panoramic radiographs

Ischemic stroke, a leading global cause of death and disability, is commonly caused by carotid arteries atherosclerosis. Carotid artery calcification (CAC) is a well-known marker of atherosclerosis. Such calcifications are classically detected by ultrasound screening. In recent years it was shown th...

Descripción completa

Detalles Bibliográficos
Autores principales: Amitay, Moshe, Barnett-Itzhaki, Zohar, Sudri, Shiran, Drori, Chana, Wase, Tamar, Abu-El-Naaj, Imad, Ben-Ari, Millie Kaplan, Rieck, Merton, Avni, Yossi, Pogozelich, Gil, Weiss, Ervin, Mosseri, Morris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096511/
https://www.ncbi.nlm.nih.gov/pubmed/37043433
http://dx.doi.org/10.1371/journal.pdig.0000081
Descripción
Sumario:Ischemic stroke, a leading global cause of death and disability, is commonly caused by carotid arteries atherosclerosis. Carotid artery calcification (CAC) is a well-known marker of atherosclerosis. Such calcifications are classically detected by ultrasound screening. In recent years it was shown that these calcifications can also be inferred from routine panoramic dental radiographs. In this work, we focused on panoramic dental radiographs taken from 500 patients, manually labelling each of the patients’ sides (each radiograph was treated as two sides), which were used to develop an artificial intelligence (AI)-based algorithm to automatically detect carotid calcifications. The algorithm uses deep learning convolutional neural networks (CNN), with transfer learning (TL) approach that achieved true labels for each corner, and reached a sensitivity (recall) of 0.82 and a specificity of 0.97 for individual arteries, and a recall of 0.87 and specificity of 0.97 for individual patients. Applying and integrating the algorithm in healthcare units and dental clinics has the potential of reducing stroke events and their mortality and morbidity consequences.