Cargando…
Strategy Based on Michael Addition Reaction for the Development of Bioinspired Multilayered and Multiphasic 3D Constructs
The high incidence of osteochondral defects has increased the interest in the development of improved repairing alternatives, with tissue engineering being considered a promising approach. The hierarchical, complex structure of osteochondral tissue requires the design of a biomimetic multilayered sc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096539/ https://www.ncbi.nlm.nih.gov/pubmed/37050249 http://dx.doi.org/10.3390/polym15071635 |
_version_ | 1785024361136128000 |
---|---|
author | Olaru, Mihaela Simionescu, Natalia Doroftei, Florica David, Geta |
author_facet | Olaru, Mihaela Simionescu, Natalia Doroftei, Florica David, Geta |
author_sort | Olaru, Mihaela |
collection | PubMed |
description | The high incidence of osteochondral defects has increased the interest in the development of improved repairing alternatives, with tissue engineering being considered a promising approach. The hierarchical, complex structure of osteochondral tissue requires the design of a biomimetic multilayered scaffold. Here, a multilayered and multiphasic 3D macroporous structure was achieved at subzero temperature by the Michael addition reaction of amino functionalities of collagen with acryloyl groups of a bifunctionalized poly(ε-caprolactone). This green approach has been successfully applied to crosslink layers of different composition, both for their efficient sequential formation and connection. Polyethylenimine functionalized nano-hydroxyapatite (nHAp(LPEI)) was added to the bottom layer. The resulting hybrid cryogels were characterized by morphology, equilibrium swelling ratios, compressive strength analysis, and MTS assay. They presented good stability, integrity, and biocompatibility. The results revealed that the properties of the prepared constructs may be tuned by varying the composition, number, and thickness of the layers. The Young modulus values were between 3.5 ± 0.02 and 10.5 ± 0.6 kPa for the component layers, while for the multilayered structures they were more than 7.3 ± 0.2 kPa. The equilibrium swelling ratio varied between 4.6 and 14.2, with a value of ~10.5 for the trilayered structure, correlated with the mean pore sizes (74–230 µm). |
format | Online Article Text |
id | pubmed-10096539 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-100965392023-04-13 Strategy Based on Michael Addition Reaction for the Development of Bioinspired Multilayered and Multiphasic 3D Constructs Olaru, Mihaela Simionescu, Natalia Doroftei, Florica David, Geta Polymers (Basel) Article The high incidence of osteochondral defects has increased the interest in the development of improved repairing alternatives, with tissue engineering being considered a promising approach. The hierarchical, complex structure of osteochondral tissue requires the design of a biomimetic multilayered scaffold. Here, a multilayered and multiphasic 3D macroporous structure was achieved at subzero temperature by the Michael addition reaction of amino functionalities of collagen with acryloyl groups of a bifunctionalized poly(ε-caprolactone). This green approach has been successfully applied to crosslink layers of different composition, both for their efficient sequential formation and connection. Polyethylenimine functionalized nano-hydroxyapatite (nHAp(LPEI)) was added to the bottom layer. The resulting hybrid cryogels were characterized by morphology, equilibrium swelling ratios, compressive strength analysis, and MTS assay. They presented good stability, integrity, and biocompatibility. The results revealed that the properties of the prepared constructs may be tuned by varying the composition, number, and thickness of the layers. The Young modulus values were between 3.5 ± 0.02 and 10.5 ± 0.6 kPa for the component layers, while for the multilayered structures they were more than 7.3 ± 0.2 kPa. The equilibrium swelling ratio varied between 4.6 and 14.2, with a value of ~10.5 for the trilayered structure, correlated with the mean pore sizes (74–230 µm). MDPI 2023-03-24 /pmc/articles/PMC10096539/ /pubmed/37050249 http://dx.doi.org/10.3390/polym15071635 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Olaru, Mihaela Simionescu, Natalia Doroftei, Florica David, Geta Strategy Based on Michael Addition Reaction for the Development of Bioinspired Multilayered and Multiphasic 3D Constructs |
title | Strategy Based on Michael Addition Reaction for the Development of Bioinspired Multilayered and Multiphasic 3D Constructs |
title_full | Strategy Based on Michael Addition Reaction for the Development of Bioinspired Multilayered and Multiphasic 3D Constructs |
title_fullStr | Strategy Based on Michael Addition Reaction for the Development of Bioinspired Multilayered and Multiphasic 3D Constructs |
title_full_unstemmed | Strategy Based on Michael Addition Reaction for the Development of Bioinspired Multilayered and Multiphasic 3D Constructs |
title_short | Strategy Based on Michael Addition Reaction for the Development of Bioinspired Multilayered and Multiphasic 3D Constructs |
title_sort | strategy based on michael addition reaction for the development of bioinspired multilayered and multiphasic 3d constructs |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096539/ https://www.ncbi.nlm.nih.gov/pubmed/37050249 http://dx.doi.org/10.3390/polym15071635 |
work_keys_str_mv | AT olarumihaela strategybasedonmichaeladditionreactionforthedevelopmentofbioinspiredmultilayeredandmultiphasic3dconstructs AT simionescunatalia strategybasedonmichaeladditionreactionforthedevelopmentofbioinspiredmultilayeredandmultiphasic3dconstructs AT dorofteiflorica strategybasedonmichaeladditionreactionforthedevelopmentofbioinspiredmultilayeredandmultiphasic3dconstructs AT davidgeta strategybasedonmichaeladditionreactionforthedevelopmentofbioinspiredmultilayeredandmultiphasic3dconstructs |