Cargando…
Nutritional Status of Patients with Facioscapulohumeral Muscular Dystrophy
In patients with facioscapulohumeral muscular dystrophy (FSHD), a rare genetic neuromuscular disease, reduced physical performance is associated with lower blood levels of vitamin C, zinc, selenium, and increased oxidative stress markers. Supplementation of vitamin C, vitamin E, zinc, and selenium i...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096775/ https://www.ncbi.nlm.nih.gov/pubmed/37049513 http://dx.doi.org/10.3390/nu15071673 |
Sumario: | In patients with facioscapulohumeral muscular dystrophy (FSHD), a rare genetic neuromuscular disease, reduced physical performance is associated with lower blood levels of vitamin C, zinc, selenium, and increased oxidative stress markers. Supplementation of vitamin C, vitamin E, zinc, and selenium improves the quadriceps’ physical performance. Here, we compared the nutritional status of 74 women and 85 men with FSHD. Calorie intake was lower in women with FSHD than in men. Moreover, we assessed vitamin C, vitamin E, zinc, copper, and selenium intakes in diet and their concentrations in the plasma. Vitamin E, copper, and zinc intake were lower in women with FSHD than in men, whereas plasma vitamin C, copper levels, and copper/zinc ratio were higher in women with FSHD than in men. The dietary intake and plasma concentrations of the studied vitamins and minerals were not correlated in both sexes. A well-balanced and varied diet might not be enough in patients with FSHD to correct the observed vitamin/mineral deficiencies. A low energy intake is a risk factor for suboptimal intake of proteins, vitamins, and minerals that are important for protein synthesis and other metabolic pathways and that might contribute to progressive muscle mass loss. Antioxidant supplementation and higher protein intake seem necessary to confer protection against oxidative stress and skeletal muscle mass loss. |
---|