Cargando…

Mosses on Geopolymers: Preliminary Durability Study and Chemical Characterization of Metakaolin-Based Geopolymers Filled with Wood Ash

Burning wood is estimated to produce about 6–10% of ash. Despite the possibility of recycling wood ash (WA), approximately 70% of the wood ash generated is landfilled, causing costs as well as environmental pollution. This study aims to recycle WA in an alternative way by inserting it as filler in g...

Descripción completa

Detalles Bibliográficos
Autores principales: Catauro, Michelina, Viola, Veronica, D’Amore, Alberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10096776/
https://www.ncbi.nlm.nih.gov/pubmed/37050254
http://dx.doi.org/10.3390/polym15071639
Descripción
Sumario:Burning wood is estimated to produce about 6–10% of ash. Despite the possibility of recycling wood ash (WA), approximately 70% of the wood ash generated is landfilled, causing costs as well as environmental pollution. This study aims to recycle WA in an alternative way by inserting it as filler in geopolymeric materials. Here, metakaolin, NaOH, sodium silicate, and WA are used to realize geopolymers. Geopolymers without and with 10, 20 and 30% of WA are synthesized and characterized after 7, 14, 28 and 56 days. The article’s study methods are related to geopolymers’ chemical, biological and mechanical properties. The geopolymers synthesized are compact and solid. The pH and conductivity tests and the integrity and weight loss tests have demonstrated the stability of materials. The FT-IR study and boiling water test have confirmed the successful geopolymerization in all samples. The antibacterial analysis, the moss growing test and the compressive strength test have given a first idea about the durability of the materials synthesized. Furthermore, the compressive strength test result has allowed the comparison from the literature of the specimens obtained with the Portland cement (PC). The results obtained bode well for the future of this material.